Citation: | Wang Guangchuan, Xian C. Li. Features of acquired immune properties in innate immune cells and its roles in transplant rejection[J]. Chinese Journal of Digestive Surgery, 2022, 21(8): 1044-1049. DOI: 10.3760/cma.j.cn115610-20220628-00376 |
Transplant rejection involves natural immune cells and acquired immune cells. For decades, acquired immune cells have been dominating the study of transplant immunity. Researchers have found the surprising new features of innate immune cells, including immune memory, which may be of great significance to further improve graft survival. The short‑term survival rate of grafts is very good, but the long‑term graft outcomes are less so and most transplants are eventually lost to chronic rejection in the clinic. In animal models and clinical studies, innate immune cells, especially macrophages and natural killer cells, often predominate the chronic rejection process which lead grafts lost. Recent studies suggest that innate immune cells are capable of acquiring adaptive features in that they either directly recognize the allografts or become "trained" in the allogeneic milieu to further acquire features of memory and donor specificity. In selected transplant models, targeting the adaptive features of innate immune cells has been shown to promote long‑term graft survival. Clearly, these findings highlight new therapeutic opportunities in further improvement of transplant outcomes as well as in treatment of cancers and autoimmune diseases in the clinic. The authors summarize the literature reports, introduce the recent acquired response characteristics of natural immune cells, and stimulate researchers to carry out more exploration in this field by fully discussing the heterogeneity and plasticity of natural immune cell types and the outstanding problems in related field.
[1] |
RuizP, MaldonadoP, HidalgoY, et al. Transplant tolerance: new insights and strategies for long‑term allograft acceptance[J]. Clin Dev Immunol,2013,2013:210506. DOI:10.11 55/2013/210506.
|
[2] |
LodhiSA, LambKE, Meier‑KriescheHU. Solid organ allo-graft survival improvement in the United States: the long-term does not mirror the dramatic short‑term success[J]. Am J Transplant,2011,11(6):1226‑1235. DOI: 10.1111/j.1600-6143.2011.03539.x.
|
[3] |
LiXC. The significance of non‑T‑cell pathways in graft rejection: implications for transplant tolerance[J]. Transplantation,2010,90(10):1043‑1047. DOI: 10.1097/TP.0b013e3181efcfe9.
|
[4] |
BerglerT, JungB, BourierF, et al. Infiltration of macrophages correlates with severity of allograft rejection and outcome in human kidney transplantation[J]. PLoS One,2016,11(6):e0156900. DOI: 10.1371/journal.pone.0156900.
|
[5] |
KimEJ, KwunJ, GibbyAC, et al. Costimulation blockade alters germinal center responses and prevents antibody-mediated rejection[J]. Am J Transplant,2014,14(1):59‑69. DOI: 10.1111/ajt.12526.
|
[6] |
SunJC, LanierLL. Is There natural killer cell memory and can it be harnessed by vaccination? NK cell memory and immunization strategies against infectious diseases and cancer[J]. Cold Spring Harb Perspect Biol,2018,10(10):a029538. DOI: 10.1101/cshperspect.a029538.
|
[7] |
O′LearyJG, GoodarziM, DraytonDL, et al. T cell‑and B cell-independent adaptive immunity mediated by natural killer cells[J]. Nat Immunol,2006,7(5):507‑516. DOI:10.10 38/ni1332.
|
[8] |
SunJC, BeilkeJN, LanierLL. Adaptive immune features of natural killer cells[J]. Nature,2009,457(7229):557‑561. DOI: 10.1038/nature07665.
|
[9] |
CooperMA, ElliottJM, KeyelPA, et al. Cytokine‑induced memory‑like natural killer cells[J]. Proc Natl Acad Sci U S A,2009,106(6):1915‑1919. DOI: 10.1073/pnas.0813192106.
|
[10] |
Lopez‑VergèsS, MilushJM, SchwartzBS, et al. Expansion of a unique CD57⁺NKG2Chi natural killer cell subset during acute human cytomegalovirus infection[J]. Proc Natl Acad Sci U S A,2011,108(36):14725‑14732. DOI: 10.1073/pnas.1110900108.
|
[11] |
RomeeR, SchneiderSE, LeongJW, et al. Cytokine activation induces human memory‑like NK cells[J]. Blood,2012, 120(24):4751‑4760. DOI: 10.1182/blood-2012-04-419283.
|
[12] |
ReevesRK, LiH, JostS, et al. Antigen‑specific NK cell memory in rhesus macaques[J]. Nat Immunol,2015,16(9):927-932. DOI: 10.1038/ni.3227.
|
[13] |
PalM, SchwabL, YermakovaA, et al. Tumor‑priming converts NK cells to memory‑like NK cells[J]. Oncoimmunology,2017,6(6):e1317411. DOI: 10.1080/2162402X.2017.1317411.
|
[14] |
NikzadR, AngeloLS, Aviles‑PadillaK, et al. Human natural killer cells mediate adaptive immunity to viral antigens[J]. Sci Immunol,2019,4(35):eaat8116. DOI:10.1126/sciimmunol. aat8116.
|
[15] |
van den BoschTP, KannegieterNM, HesselinkDA, et al. Targeting the monocyte‑macrophage lineage in solid organ transplantation[J]. Front Immunol,2017,8:153. DOI:10.33 89/fimmu.2017.00153.
|
[16] |
SunJC, BeilkeJN, BezmanNA, et al. Homeostatic proliferation generates long‑lived natural killer cells that respond against viral infection[J]. J Exp Med,2011,208(2):357‑368. DOI: 10.1084/jem.20100479.
|
[17] |
NiJ, MillerM, StojanovicA, et al. Sustained effector function of IL‑12/15/18‑preactivated NK cells against established tumors[J]. J Exp Med,2012,209(13):2351‑2365. DOI: 10.1084/jem.20120944.
|
[18] |
RomeeR, RosarioM, Berrien‑ElliottMM, et al. Cytokine-induced memory‑like natural killer cells exhibit enhanced responses against myeloid leukemia[J]. Sci Transl Med,2016,8(357):357ra123. DOI: 10.1126/scitranslmed.aaf2341.
|
[19] |
YuG, XuX, VuMD, et al. NK cells promote transplant tolerance by killing donor antigen‑presenting cells[J]. J Exp Med,2006,203(8):1851‑1858. DOI: 10.1084/jem.20060603.
|
[20] |
KroemerA, XiaoX, DegauqueN, et al. The innate NK cells, allograft rejection, and a key role for IL‑15[J]. J Immunol,2008,180(12):7818‑7826. DOI:10.4049/jimmunol.180.12. 7818.
|
[21] |
PaustS, GillHS, WangBZ, et al. Critical role for the chemokine receptor CXCR6 in NK cell‑mediated antigen‑specific memory of haptens and viruses[J]. Nat Immunol,2010,11(12):1127‑1135. DOI: 10.1038/ni.1953.
|
[22] |
Abdul‑CareemMF, LeeAJ, PekEA, et al. Genital HSV‑2 infection induces short‑term NK cell memory[J]. PLoS One,2012,7(3):e32821. DOI: 10.1371/journal.pone.0032821.
|
[23] |
GillardGO, Bivas‑BenitaM, HovavAH, et al. Thy1+NK [corrected] cells from vaccinia virus‑primed mice confer protection against vaccinia virus challenge in the absence of adaptive lymphocytes[J]. PLoS Pathog,2011,7(8):e1002141. DOI: 10.1371/journal.ppat.1002141.
|
[24] |
BostikP, KobkitjaroenJ, TangW, et al. Decreased NK cell frequency and function is associated with increased risk of KIR3DL allele polymorphism in simian immunodeficiency virus‑infected rhesus macaques with high viral loads[J]. J Immunol,2009,182(6):3638‑3649. DOI: 10.4049/jimmunol.0803580.
|
[25] |
TakahashiY, ByrareddySN, AlbrechtC, et al. In vivo admi-nistration of a JAK3 inhibitor during acute SIV infection leads to significant increases in viral load during chronic infection[J]. PLoS Pathog,2014,10(3):e1003929. DOI:10. 1371/journal.ppat.1003929.
|
[26] |
GumáGum BudtM, SMezA, et al. Expansion of CD94/NKG2C+NK cells in response to human cytomegalovirus-infected fibroblasts[J]. Blood,2006,107(9):3624‑3631. DOI: 10.1182/blood-2005-09-3682.
|
[27] |
FoleyB, CooleyS, VernerisMR, et al. Human cytomegalovirus (CMV)‑induced memory‑like NKG2C(+) NK cells are transplantable and expand in vivo in response to recipient CMV antigen[J]. J Immunol,2012,189(10):5082‑5088. DOI: 10.4049/jimmunol.1201964.
|
[28] |
BéziatV, DalgardO, AsselahT, et al. CMV drives clonal ex-pansion of NKG2C+NK cells expressing self‑specific KIRs in chronic hepatitis patients[J]. Eur J Immunol,2012,42(2):447‑457. DOI: 10.1002/eji.201141826.
|
[29] |
PetitdemangeC, BecquartP, WauquierN, et al. Unconventional repertoire profile is imprinted during acute chikungunya infection for natural killer cells polarization toward cytotoxicity[J]. PLoS Pathog,2011,7(9):e1002268. DOI:10. 1371/journal.ppat.1002268.
|
[30] |
ChenW, GhobrialRM, LiXC. The evolving roles of memory immune cells in transplantation[J]. Transplantation,2015,99(10):2029‑2037. DOI:10.1097/TP.00000000000 00802.
|
[31] |
AbboudiH, MacpheeIA. Individualized immunosuppression in transplant patients: potential role of pharmacogenetics[J]. Pharmgenomics Pers Med,2012,5:63‑72. DOI: 10.2147/PGPM.S21743.
|
[32] |
WynnTA, ChawlaA, PollardJW. Macrophage biology in development, homeostasis and disease[J]. Nature,2013, 496(7446):445‑455. DOI: 10.1038/nature12034.
|
[33] |
LlaudoI, FribourgM, MedofME, et al. C5aR1 regulates mi-gration of suppressive myeloid cells required for costimulatory blockade‑induced murine allograft survival[J]. Am J Transplant,2019,19(3):633‑645. DOI: 10.1111/ajt.15072.
|
[34] |
ThornleyTB, FangZ, BalasubramanianS, et al. Fragile TIM-4‑expressing tissue resident macrophages are migratory and immunoregulatory[J]. J Clin Invest,2014,124(8):3443‑3454. DOI: 10.1172/JCI73527.
|
[35] |
ZhaoY, ChenS, LanP, et al. Macrophage subpopulations and their impact on chronic allograft rejection versus graft acceptance in a mouse heart transplant model[J]. Am J Transplant,2018,18(3):604‑616. DOI: 10.1111/ajt.14543.
|
[36] |
ZecherD, van RooijenN, RothsteinDM, et al. An innate response to allogeneic nonself mediated by monocytes[J]. J Immunol,2009,183(12):7810‑7816. DOI:10.4049/jimm unol.0902194.
|
[37] |
OberbarnscheidtMH, ZengQ, LiQ, et al. Non‑self recognition by monocytes initiates allograft rejection[J]. J Clin Invest,2014, 124(8):3579‑3589. DOI: 10.1172/JCI74370.
|
[38] |
DaiH, FridayAJ, Abou‑DayaKI, et al. Donor SIRPα polymorphism modulates the innate immune response to allogeneic grafts[J]. Sci Immunol,2017,2(12):eaam6202. DOI:10.11 26/sciimm unol.aam6202.
|
[39] |
LakkisFG, LiXC. Innate allorecognition by monocytic cells and its role in graft rejection[J]. Am J Transplant,2018,18(2):289‑292. DOI: 10.1111/ajt.14436.
|
[40] |
QuintinJ, SaeedS, MartensJ, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes[J]. Cell Host Microbe,2012, 12(2):223‑232. DOI: 10.1016/j.chom.2012.06.006.
|
[41] |
BistoniF, VecchiarelliA, CenciE, et al. Evidence for macro-phage‑mediated protection against lethal Candida albicans infection[J]. Infect Immun,1986,51(2):668‑674. DOI:10. 1128/iai.51.2.668-674.1986.
|
[42] |
BistoniF, VerducciG, PeritoS, et al. Immunomodulation by a low‑virulence, agerminative variant of Candida albicans. Further evidence for macrophage activation as one of the effector mechanisms of nonspecific anti‑infectious protection[J]. J Med Vet Mycol,1988,26(5):285‑299. DOI: 10.1080/02681218880000401.
|
[43] |
ChenF, WuW, MillmanA, et al. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion[J]. Nat Immunol,2014,15(10):938‑946. DOI: 10.1038/ni.2984.
|
[44] |
BartonES, WhiteDW, CathelynJS, et al. Herpesvirus laten-cy confers symbiotic protection from bacterial infection[J]. Nature,2007,447(7142):326‑329. DOI:10.1038/nature05 762.
|
[45] |
MulderW, OchandoJ, JoostenL, et al. Therapeutic targeting of trained immunity[J]. Nat Rev Drug Discov,2019,18(7):553‑566. DOI: 10.1038/s41573-019-0025-4.
|
[46] |
BrazaMS, van LeentM, LameijerM, et al. Inhibiting infla-mmation with myeloid cell‑specific nanobiologics promotes organ transplant acceptance[J]. Immunity,2018,49(5):819‑828.e6. DOI: 10.1016/j.immuni.2018.09.008.
|
[47] |
WalkerJA, BarlowJL, McKenzieAN. Innate lymphoid cells‒how did we miss them?[J]. Nat Rev Immunol,2013,13(2):75‑87. DOI: 10.1038/nri3349.
|
[48] |
SpitsH, CupedoT. Innate lymphoid cells: emerging insi-ghts in development, lineage relationships, and function[J]. Annu Rev Immunol,2012,30:647‑675. DOI: 10.1146/annurev-immunol-020711-075053.
|
[49] |
MazzuranaL, RaoA, Van AckerA, et al. The roles for innate lymphoid cells in the human immune system[J]. Semin Immunopathol,2018,40(4):407‑419. DOI: 10.1007/s00281-018-0688-7.
|
[50] |
WangX, PengH, TianZ. Innate lymphoid cell memory[J]. Cell Mol Immunol,2019,16(5):423‑429. DOI:10.1038/s41 423-019-0212-6.
|
[51] |
CooperMA, FehnigerTA, ColonnaM. Is there natural killer cell memory and can it be harnessed by vaccination? Vaccination strategies based on NK cell and ILC memory[J]. Cold Spring Harb Perspect Biol,2018,10(10):a029512. DOI: 10.1101/cshperspect.a029512.
|
[52] |
WangX, PengH, CongJ, et al. Memory formation and long-term maintenance of IL-7Rα+ ILC1s via a lymph node-liver axis[J].Commun,2018,9(1):4854. DOI: 10.1038/s41467-018-07405-5.
|