The predictive value of preoperative lymphocyte‑to‑monocyte ratio combined with platelet⁃to⁃lymphocyte ratio scoring model for prognosis of pancreatic ductal adenocarcinoma after radical resection
-
摘要:目的
探讨术前淋巴细胞与单核细胞比值(LMR)‑血小板与淋巴细胞比值(PLR)评分模型对胰腺导管腺癌(PDAC)根治术后预后的预测价值。
方法采用回顾性队列研究方法。收集2015年1月至2019年12月兰州大学第二医院收治的116例PDAC患者的临床病理资料;男73例,女43例;年龄为61.5(29.0~75.0)岁。患者均行胰腺癌根治术。观察指标:(1)LMR、PLR的最佳截断值。(2)不同术前LMR‑PLR评分患者的临床病理特征。(3)随访和生存情况。(4)PDAC患者预后的影响因素分析。(5)列线图预测模型构建及验证。偏态分布的计量资料以M(范围)表示。计数资料以绝对数表示,组间比较采用χ²检验。等级资料比较采用Mann‑Whitney U检验。采用Graphpad prism 8绘制生存曲线,Kaplan‑Meier法计算生存率,Log‑Rank检验进行生存分析。单因素和多因素分析采用COX比例风险回归模型。采用X‑tile软件确定LMR、PLR的最佳截断值。根据多因素分析结果构建列线图预测模型,绘制受试者工作特征(ROC)曲线,以曲线下面积(AUC)评价列线图预测模型的区分度。以校准曲线评价列线图预测模型的一致性。以决策曲线评价临床获益度。
结果(1)LMR、PLR的最佳截断值。LMR、PLR的最佳截断值分别为1.9和156.3。(2)不同术前LMR‑PLR评分患者的临床病理特征。术前LMR‑PLR评分为0、1、2分患者分别为11、42、63例。上述3者CA125(<12.4 U/mL)、脉管侵犯、术后化疗分别为1、8、24例,9、27、27例,3、26、43例,不同LMR‑PLR评分患者上述指标比较,差异均有统计学意义(χ²=6.73、8.37、6.68,P<0.05)。(3)随访和生存情况。116例患者均获得随访,随访时间为39(2~86)个月。116例PDAC患者术后1、2、3生存率分别为50.9%、37.9%、19.3%,生存时间为13(1~85)个月。LMR‑PLR评分为0、1、2分患者生存时间分别为3(1~9)个月、7(2~56)个月、26(2~85)个月,3者生存情况比较,差异有统计学意义(χ²=48.78,P<0.05)。(4)PDAC患者预后的影响因素分析。多因素分析结果显示:癌胚抗原、CA19‑9、LMR‑PLR评分、肿瘤长径是PADC患者预后的独立影响因素[风险比=1.61,1.88,0.27,1.87,95%可信区间(CI)为1.02~2.54,1.18~3.00,0.19~0.39,1.13~3.09,P<0.05]。(5)列线图预测模型构建及验证。纳入癌胚抗原、CA19‑9、LMR‑PLR评分、肿瘤长径构建列线图预测模型。绘制ROC曲线预测患者1、2、3年生存率的AUC分别为0.86(95%CI为0.79~0.93,P<0.05)、0.86(95%CI为0.79~0.92,P<0.05)、0.87(95%CI为0.78~0.95,P<0.05)。校准曲线结果显示:列线图预测模型的预测生存率和实际生存率一致性较好(一致性指数为0.74)。决策曲线结果显示:在风险阈值为0.12~0.85,列线图预测模型预测性能优于单一因素的预测性能。
结论癌胚抗原、CA19‑9、LMR‑PLR评分、肿瘤长径是PDAC患者根治术后预后的独立影响因素,其列线图预测模型可预测患者术后生存率。预测生存率和实际生存率一致性较好。在风险阈值为0.12~0.85,列线图预测模型预测性能优于单一因素预测性能。
-
关键词:
- 胰腺肿瘤 /
- 淋巴细胞与单核细胞比值 /
- 血小板与淋巴细胞比值 /
- 预后 /
- 影响因素 /
- 列线图
Abstract:ObjectiveTo investigate the predictive value of preoperative lymphocyte-to-monocyte ratio (LMR) combined with platelet‑to‑lymphocyte ratio (PLR) (LMR‑PLR) scoring model for prognosis of pancreatic ductal adenocarcinoma (PDAC) after radical resection.
MethodsThe retrospective cohort study was conducted. The clinicopathological data of 116 patients with PDAC who were admitted to the Second Hospital of Lanzhou University from January 2015 to December 2019 were collected. There were 73 males and 43 females, aged 61.5(range, 29.0-75.0)years. All patients underwent radical resection for PDAC. Observation indicators: (1) optimal cut‑off value of LMR and PLR; (2) clinicopathological features of patients with different scores of preoperative LMR‑PLR scoring model; (3) follow‑up and survival; (4) influencing factors for prognosis of PDAC patients; (5) construction and verification of nomogram prediction model. Measurement data with skewed distribution were represented as M(range). Count data were described as absolute numbers, and comparison between groups was conducted using the chi‑square test. Comparison of ordinal data was conducted using the Mann‑Whitney U test. The Graphpad prism 8 was used to draw survival curve, the Kaplan‑Meier method was used to calculate survival rate, and the Log‑Rank test was used for survival analysis. The COX proportional hazard regression model was used for univariate and multivariate analyses. The X‑tile software was used to determine the optimal cut‑off values of LMR and PLR. The nomogram prediction model was conducted based on the results of multivariate analysis, and the receiver operating characteristic (ROC) curve was drawn. The area under curve (AUC) was used to evaluate the discrimination of nomogram prediction model. The calibration curve was used to evaluate the consistency of nomogram prediction model and the decision curve was used to evaluate the clinical benefits.
Results(1) Optimal cut‑off value of LMR and PLR. The optimal cut‑off values of LMR and PLR were 1.9 and 156.3. (2) Clinicopathological features of patients with different scores of preoperative LMR‑PLR scoring model. Cases with LMR‑PLR scoring as 0, 1, 2 were 11, 42, 63. Cases with CA125 <12.4 U/mL, cases postoperative with vascular invasion, cases with postoperative chemotherapy in patients with 0, 1, 2 of LMR‑PLR scoring were 1, 8, 24, 9, 27, 27, 3, 26, 43, showing significant differences among them (χ²=6.73, 8.37, 6.68, P<0.05). (3) Follow‑up and survival. All 116 patients were followed up for 39(range, 2-86)months. The 1‑, 2‑, 3‑year survival rate of 116 PDAC patients was 50.9%, 37.9%, 19.3%, respectively, with a survival time of 13(range, 1-85)months. The survival time of patients with LMR‑PLR scoring as 0, 1, 2 was 3(range, 1-9)months, 7(range, 2-56)months, 26(range, 2-85)months, respectively, showing a significant difference among them (χ²=48.78, P<0.05). (4) Influencing factors for prognosis of PDAC patients. Results of multivariate analysis showed that carcinoembryonic antigen (CEA), CA19‑9, LMR‑PLR score, tumor diameter were independent factors affecting prognosis of patients (hazard ratio=1.61, 1.88, 0.27, 1.87, 95% confidence interval as 1.02-2.54, 1.18-3.00, 0.19-0.39, 1.13-3.09, P<0.05). (5) Construction and verification of nomogram prediction model. The nomogram prediction model was constructed based on CEA, CA19‑9, LMR‑PLR score and tumor diameter. The AUC of ROC curve in predicting 1‑, 2‑, 3‑year survival rate of patients was 0.86 (95% confidence interval as 0.79-0.93, P<0.05), 0.86 (95% confidence interval as 0.79-0.92, P<0.05), 0.87 (95% confidence interval as 0.78-0.95, P<0.05), respectively. Results of calibration curve showed that the predicted survival rate of nomogram prediction model was consistent with the actual survival rate, with the consistency index as 0.74. Results of decision curve showed that the predictive performance of nomogram prediction model was superior to that of a single factor at a risk threshold of 0.12-0.85.
ConclusionsCEA, CA19‑9, LMR‑PLR score, tumor diameter are independent factors affecting prognosis of patients undergoing radical resection for PDAC, and the nomogram prediction model can predict postoperative survival rate. The predicted survival rate of nomogram prediction model is consistent with the actual survival rate, and the predictive performance of nomogram prediction model is superior to that of a single factor at a risk threshold of 0.12-0.85.
-
胰腺癌是消化系统中恶性程度极高的肿瘤之一[1‑3]。其中,胰腺导管腺癌(pancreatic ductal adeno⁃carcinoma,PDAC)是胰腺癌中最常见且恶性程度较高的病理学类型[4‑6]。已有研究结果显示:炎症参与细胞转化、存活、增殖、侵袭、血管生成和转移等肿瘤发生步骤[7‑13]。术前中性粒细胞与淋巴细胞比值、PLT与淋巴细胞比值(platelet⁃to⁃lymphocyte ratio,PLR)、淋巴细胞与单核细胞比值(lymphocyte⁃monocyte ratio,LMR)、全身免疫炎症指数与胰腺癌预后的研究日益深入[14‑19]。已有研究结果显示:LMR⁃PLR评分与胃癌、非小细胞肺癌预后相关,预测患者术后生存状况更加敏感[20‑21]。本研究回顾性分析2015年1月至2019年12月兰州大学第二医院收治的116例PDAC患者的临床病理资料,探讨LMR⁃PLR评分模型对PDAC根治术后预后的预测价值。
资料与方法
一、一般资料
采用回顾性队列研究方法。收集116例PDAC患者的临床病理资料;男73例,女43例;年龄为61.5(29.0~75.0)岁。本研究通过兰州大学第二医院医学伦理委员会审批,批号为2022A‑237。患者及家属均签署知情同意书。
二、纳入标准和排除标准
纳入标准:(1)行根治性手术。(2)术后组织病理学检查诊断为PDAC。(3)无其他恶性肿瘤病史。(4)临床病理资料完整。
排除标准:(1)术后组织病理学检查诊断为非PDAC。(2)术后因严重并发症致生存时间<30 d。(3)合并影响血细胞分析的疾病,如血液系统疾病、急性或慢性感染性疾病等。(4)临床病理资料缺失。
三、观察指标和评价标准
观察指标:(1)LMR、PLR的最佳截断值(2)不同术前LMR‑PLR评分患者的临床病理特征:性别、年龄、ALT/AST、TBil、AFP、CEA、CA125、CA19‑9、肿瘤长径、TNM分期、手术切缘、肿瘤分化程度、脉管侵犯、神经侵犯、术后化疗。(3)随访和生存情况:获得随访患者例数、随访时间、患者生存情况。(4)PDAC患者预后的影响因素分析:性别、年龄、ALT/AST、TBil、AFP、CEA、CA125、CA19‑9、LMR⁃PLR评分、肿瘤长径、TNM分期、手术切缘、肿瘤分化程度、脉管侵犯、神经侵犯、术后化疗。(5)列线图预测模型构建及验证。
评价标准:(1)LMR为淋巴细胞绝对值/单核细胞绝对值;PLR为PLT绝对值/淋巴细胞绝对值。(2)使用X‑tile软件确定LMR、PLR的最佳截断值(Kaplan‑Meier法绘制生存曲线,经Log‑Rank检验确定P值最小的结果即为最佳截断值)。(3)LMR⁃PLR评分标准:LMR<1.9且PLR≥156.3,LMR‑PLR评分为0分;LMR≥1.9或PLR<156.3,LMR‑PLR评分为1分;LMR≥1.9且PLR<156.3,LMR‑PLR评分为2分。(4)总生存时间定义为自手术日期至末次有效随访日期或患者死亡日期。
四、随访
采用门诊和电话方式进行随访。随访内容包括临床及实验室检查,了解患者术后生存情况。随访时间截至2022年3月。
五、统计学分析
应用SPSS 26.0统计软件和R软件(4.1.2版本)进行分析。偏态分布的计量资料以M(范围)表示。计数资料以绝对数表示,组间比较采用χ²检验。等级资料比较采用Mann‑Whitney U检验。采用Graphpad prism 8绘制生存曲线,Kaplan‑Meier法计算生存率,Log⁃Rank检验进行生存分析。单因素和多因素分析采用COX比例风险回归模型。采用X‑tile软件(3.6.1版本)确定LMR、PLR的最佳截断值。根据多因素分析结果构建列线图预测模型,绘制受试者工作特征(receiver operating characteristic,ROC)曲线,以曲线下面积(area under curve,AUC)评价列线图预测模型的区分度。以校准曲线评价列线图预测模型的一致性。以决策曲线评价临床获益度。P<0.05为差异有统计学意义。
结果
一、LMR、PLR的最佳截断值
LMR、PLR的最佳截断值分别为1.9和156.3。见图1。116例患者中14例LMR<1.9,102例LMR≥1.9,66例PLR<156.3,50例PLR≥156.3。
图 1 X‑tile软件计算淋巴细胞与单核细胞比值(LMR)和血小板与淋巴细胞比值(PLR)的最佳截断值 1A:三角形网络可视化呈现LMR数据集;1B:LMR最佳截断值两侧患者数量分布直方图;1C:三角形网络可视化呈现PLR数据集;1D:PLR最佳截断值两侧患者数量分布直方图注:LMR为淋巴细胞与单核细胞比值;PLR为血小板与淋巴细胞比值;三角形网络可视化中每一个像素亮点代表Log‑Rank检验值,最亮的像素点处即为最佳截断值Figure 1. The optimal cut‑off value of lymphocyte‑to‑monocyte ratio (LMR) and platelet‑to‑lymphocyte ratio (PLR) in X‑tile software 1A: Visualization of LMR datasets using triangular networks; 1B: Histogram of the distribution of patients on both sides of the LMR optimal cut‑off value; 1C: Visualization of PLR datasets using triangular networks; 1D: Histogram of the distribution of patients on both sides of the PLR optimal cut‑off value二、不同术前LMR‑PLR评分患者的临床病理特征
术前LMR‑PLR评分为0、1、2分患者分别为11、42、63例。不同术前LMR‑PLR评分患者CA125、脉管侵犯、术后化疗比较,差异均有统计学意义(P<0.05);性别、年龄、ALT/AST、TBil、AFP、CEA、CA19‑9、肿瘤长径、TNM分期、手术切缘、肿瘤分化程度、神经侵犯比较,差异均无统计学意义(P>0.05)。见表1。
表 1 不同术前LMR‑PLR评分胰腺导管腺癌患者的临床病理特征(例)Table 1. Clinicopathological features of pancreatic ductal adenocarcinoma patients with different preoperative lymphocyte‑to‑monocyte ratio combined with platelet‑to‑lymphocyte ratio score (case)LMR‑PLR评分 例数 性别 年龄 ALT/AST 总胆红素 甲胎蛋白 男 女 <65岁 ≥65岁 <2 ≥2 <252 μm ol /L≥252 μm ol /L<7 μg/L ≥7 μg/L 0分 11 8 3 6 5 10 1 8 3 9 2 1分 42 29 13 32 10 32 10 36 6 33 9 2分 63 36 27 47 16 47 16 59 4 53 10 统计量值 χ²=2.03 χ²=2.21 χ²=1.41 χ²=4.75 χ²=0.53 P值 0.362 0.331 0.495 0.093 0.769 注: LMR为淋巴细胞与单核细胞比值;PLR为血小板与淋巴细胞比值;ALT为丙氨酸转氨酶;AST为天冬氨酸转氨酶三、随访和生存情况
116例患者均获得随访。随访时间为39(2~86)个月。116例患者术后1、2、3年生存率分别为50.9%、37.9%、19.3%,生存时间为13(1~85)个月,见图2。LMR‑PLR评分为0、1、2分患者生存时间分别为3(1~9)个月、7(2~56)个月、26(2~85)个月,3者生存情况比较,差异有统计学意义(χ²=48.78,P<0.001)。见图3。
进一步两两比较结果显示:LMR‑PLR评分为0分患者分别与LMR‑PLR评分为1分、2分患者生存时间比较,差异均有统计学意义(χ²=7.85、33.88,P<0.05)。LMR‑PLR评分为1分患者与LMR‑PLR评分为2分患者生存时间比较,差异有统计学意义(χ²=26.66,P<0.05)。
四、PDAC患者预后的影响因素分析
单因素分析结果显示:CEA、CA125、CA19‑9、LMR‑PLR评分、肿瘤长径、TNM分期、肿瘤分化程度、术后化疗是影响PDAC患者预后的相关因素(P<0.05),而性别、年龄、ALT/AST、TBil、AFP、手术切缘、脉管及神经侵犯不是影响患者预后的相关因素(P>0.05)。见表2。
表 2 影响116例胰腺导管腺癌患者行胰腺癌根治术后预后的单因素分析Table 2. Univariate analysis of prognosis in 116 patients undergoing radical resection for pancreatic ductal adenocarcinoma临床病理因素 赋值 例数 风险比 95%可信区间 P值 性别 男 1 73 1.16 0.77~1.75 0.488 女 2 43 年龄(岁) <65 1 85 0.88 0.55~1.39 0.576 ≥65 2 31 ALT/AST <2 1 89 0.66 0.39~1.10 0.109 ≥2 2 27 总胆红素(μm ol /L)<252.0 1 103 1.75 0.95~3.21 0.072 ≥252.0 2 13 甲胎蛋白(μg/L) <7 1 95 2.52 0.92~6.90 0.073 ≥7 2 21 癌胚抗原(μg/L) <2.6 1 50 1.92 1.26~2.93 0.002 ≥2.6 2 66 CA125(U/mL) <12.4 1 33 1.68 1.04~2.72 0.034 ≥12.4 2 83 CA19‑9(U/mL) <450.9 1 76 2.03 1.33~3.10 0.001 ≥450.9 2 40 LMR‑PLR评分 0分 0 11 0.31 0.22~0.43 <0.001 1分 1 42 2分 2 63 肿瘤长径(cm) <4 1 59 1.58 1.05~2.39 0.029 ≥4 2 57 TNM分期 Ⅰ期 1 48 1.33 1.06~1.68 0.015 Ⅱ期 2 46 Ⅲ期 3 16 Ⅳ期 4 6 手术切缘 R0 0 40 1.38 0.73~2.58 0.323 R1 1 76 肿瘤分化程度 低分化 1 40 0.56 0.37~0.86 0.008 中、高分化 2 76 脉管侵犯 无 1 53 1.21 0.81~1.83 0.354 有 2 63 神经侵犯 无 1 34 0.87 0.55~1.36 0.534 有 2 82 术后化疗 无 1 44 0.62 0.41~0.94 0.023 有 2 72 注: LMR为淋巴细胞与单核细胞比值;PLR为血小板与淋巴细胞比值;ALT为丙氨酸转氨酶;AST为天冬氨酸转移酶多因素分析结果显示:CEA、CA19‑9、LMR⁃PLR评分、肿瘤长径是影响PDAC患者预后的独立因素(P<0.05)。见表3。
表 3 影响116例胰腺导管腺癌患者行胰腺癌根治术后预后的多因素分析Table 3. Multivariate analysis of prognosis in 116 patients undergoing radical resection for pancreatic ductal adenocarcinoma临床病理因素 b值 标准误 Wald值 风险比 95%可信区间 P值 癌胚抗原 0.47 0.23 4.21 1.61 1.02~2.54 0.040 CA125 -0.09 0.27 0.10 0.92 0.54~1.56 0.754 CA19‑9 0.63 0.24 7.06 1.88 1.18~3.00 0.008 LMR‑PLR评分 -1.32 0.19 47.36 0.27 0.19~0.39 <0.001 肿瘤长径 0.63 0.26 5.93 1.87 1.13~3.09 0.015 TNM分期 -0.07 0.14 0.27 0.93 0.70~1.23 0.606 肿瘤分化程度 -0.17 0.23 0.53 0.84 0.53~1.33 0.465 术后化疗 -0.23 0.22 1.13 0.79 0.52~1.22 0.288 注: LMR为淋巴细胞与单核细胞比值;PLR为血小板与淋巴细胞比值五、列线图预测模型构建及验证
根据多因素分析结果,应用CEA、CA19‑9、LMR⁃PLR评分、肿瘤长径构建列线图预测模型。见图4。绘制ROC曲线预测患者1、2、3年生存率的AUC分别为0.86(95%CI为0.79~0.93,P<0.001)、0.86(95%CI为0.79~0.92,P<0.001)、0.87(95%CI为0.78~0.95,P<0.001)。
校准曲线结果显示:该列线图预测模型的预测生存率和实际生存率一致性较好(一致性指数为0.74)。见图5~7。
图 5 116例胰腺导管腺癌患者胰腺癌根治术后1年生存率列线图预测模型的受试者工作特征曲线和校准曲线 5A:受试者工作特征曲线;5B:校准曲线Figure 5. The receiver operating characteristic (ROC) curve and calibration curve of nomogram prediction model in predicting 1‑year survival rate of 116 patients undergoing radical resection for pancreatic ductal adenocarcinoma 5A: The ROC curve; 5B: The calibration curve图 6 116例胰腺导管腺癌患者胰腺癌根治术后2年生存率列线图预测模型的受试者工作特征曲线和校准曲线 6A:受试者工作特征曲线;6B:校准曲线Figure 6. The receiver operating characteristic (ROC) curve and calibration curve of nomogram prediction model in predicting 2‑year survival rate of 116 patients undergoing radical resection for pancreatic ductal adenocarcinoma 6A: The ROC curve; 6B: The calibration curve图 7 116例胰腺导管腺癌患者胰腺癌根治术后3年生存率列线图预测模型的受试者工作特征曲线和校准曲线 7A:受试者工作特征曲线;7B:校准曲线Figure 7. The receiver operating characteristic (ROC) curve and calibration curve of nomogram prediction model in predicting 3‑year survival rate of 116 patients undergoing radical resection for pancreatic ductal adenocarcinoma 7A: The ROC curve; 7B: The calibration curve决策曲线结果显示:在风险阈值为0.12~0.85,列线图预测模型预测性能优于单一因素的预测性能。见图8。
讨论
胰腺癌发病较隐匿、临床症状不明显,确诊时大部分患者已达到局部晚期或发生转移[22‑26]。治愈胰腺癌的首选方法是根治性手术,但术后复发率和病死率仍较高[27⁃31]。因此,寻找预后预测指标对胰腺癌的治疗非常重要[32]。炎症被认为是癌症发展和进展的标志性特征[33‑34]。慢性胰腺炎作为胰腺癌的主要危险因素之一,其参与肿瘤的发生、发展及转移等重要过程[35‑37]。
本研究结果显示:LMR‑PLR评分与PDAC患者预后呈正相关,评分越高患者预后越好。因此,LMR‑PLR评分可以作为PDAC患者术后的一个预测指标。LMR‑PLR评分越高表明淋巴细胞数量相对增加越多,而单核细胞与PLT数量相对减少。淋巴细胞是免疫系统的主要成分,其不仅能够识别和清除外来异物,还可清除表面抗原发生异常的细胞,从而维持机体内环境稳定。已有研究结果显示:胰腺癌可通过抑制IL‑10和TGF‑β减少淋巴细胞生成,使抗肿瘤免疫功能降低,为肿瘤进展提供有利条件[38⁃40]。单核细胞已成为恶性肿瘤发展和进展的重要调节因子,可通过吞噬作用直接杀死肿瘤细胞[41‑42]。肿瘤细胞产生肿瘤相关炎症介质刺激PLT增生。PLT衍生的生长因子赋予肿瘤细胞间充质样表型并打开毛细血管内皮加速远处器官的转移。最后,PLT分泌的生长因子刺激肿瘤细胞增殖至微转移灶[43‑48]。
目前炎症指标的最佳截断值未考虑时间相关的因素,故通过ROC曲线获取最佳截断值并不合适[49]。本研究采用X‑tile软件获取最佳截断值,综合术前LMR和PLR的最佳截断值形成LMR‑PLR评分标准。本研究多因素分析结果显示:LMR⁃PLR评分是影响PDAC患者胰腺癌根治术后预后的独立因素。根据多因素分析结果构建预测PDAC患者胰腺癌根治术后预后的列线图预测模型。决策曲线结果显示:在一定风险阈值范围内,列线图预测模型预测性能优于单一因素。
本研究为回顾性单中心小样本研究,可能存在选择偏倚;胰腺癌患者的病理学类型仅限于PDAC,未对其余病理学类型进行讨论。其结论有待于大样本、多中心的临床研究加以验证。
综上,CEA、CA19‑9、LMR‑PLR评分、肿瘤长径是PDAC患者根治术后预后的独立影响因素,其列线图预测模型可预测患者术后生存率。预测生存率和实际生存率一致性较好。在风险阈值为0.12~0.85,列线图预测模型预测性能优于单一因素预测性能。
刘旭东:酝酿和设计研究方案,实施研究,起草文章;王云生、杜鹏、赵斌:修改论文并提供指导性支持;张国强、郑强、赖佳敏:采集整理数据并提供统计学指导;程志斌:酝酿和设计研究方案,修改论文并提供指导性支持所有作者均声明不存在利益冲突刘旭东, 王云生, 杜鹏, 等. 术前淋巴细胞与单核细胞比值‑血小板与淋巴细胞比值评分模型对胰腺导管腺癌根治术预后的预测价值[J]. 中华消化外科杂志, 2023, 22(11): 1351-1360. DOI: 10.3760/cma.j.cn115610-20230930-00125.http://journal.yiigle.com/LinkIn.do?linkin_type=cma&DOI=10.3760/cma.j.cn115610-20230930-23125(new)
-
图 1 X‑tile软件计算淋巴细胞与单核细胞比值(LMR)和血小板与淋巴细胞比值(PLR)的最佳截断值 1A:三角形网络可视化呈现LMR数据集;1B:LMR最佳截断值两侧患者数量分布直方图;1C:三角形网络可视化呈现PLR数据集;1D:PLR最佳截断值两侧患者数量分布直方图
注:LMR为淋巴细胞与单核细胞比值;PLR为血小板与淋巴细胞比值;三角形网络可视化中每一个像素亮点代表Log‑Rank检验值,最亮的像素点处即为最佳截断值
Figure 1. The optimal cut‑off value of lymphocyte‑to‑monocyte ratio (LMR) and platelet‑to‑lymphocyte ratio (PLR) in X‑tile software 1A: Visualization of LMR datasets using triangular networks; 1B: Histogram of the distribution of patients on both sides of the LMR optimal cut‑off value; 1C: Visualization of PLR datasets using triangular networks; 1D: Histogram of the distribution of patients on both sides of the PLR optimal cut‑off value
图 5 116例胰腺导管腺癌患者胰腺癌根治术后1年生存率列线图预测模型的受试者工作特征曲线和校准曲线 5A:受试者工作特征曲线;5B:校准曲线
Figure 5. The receiver operating characteristic (ROC) curve and calibration curve of nomogram prediction model in predicting 1‑year survival rate of 116 patients undergoing radical resection for pancreatic ductal adenocarcinoma 5A: The ROC curve; 5B: The calibration curve
图 6 116例胰腺导管腺癌患者胰腺癌根治术后2年生存率列线图预测模型的受试者工作特征曲线和校准曲线 6A:受试者工作特征曲线;6B:校准曲线
Figure 6. The receiver operating characteristic (ROC) curve and calibration curve of nomogram prediction model in predicting 2‑year survival rate of 116 patients undergoing radical resection for pancreatic ductal adenocarcinoma 6A: The ROC curve; 6B: The calibration curve
图 7 116例胰腺导管腺癌患者胰腺癌根治术后3年生存率列线图预测模型的受试者工作特征曲线和校准曲线 7A:受试者工作特征曲线;7B:校准曲线
Figure 7. The receiver operating characteristic (ROC) curve and calibration curve of nomogram prediction model in predicting 3‑year survival rate of 116 patients undergoing radical resection for pancreatic ductal adenocarcinoma 7A: The ROC curve; 7B: The calibration curve
表 1 不同术前LMR‑PLR评分胰腺导管腺癌患者的临床病理特征(例)
Table 1 Clinicopathological features of pancreatic ductal adenocarcinoma patients with different preoperative lymphocyte‑to‑monocyte ratio combined with platelet‑to‑lymphocyte ratio score (case)
LMR‑PLR评分 例数 性别 年龄 ALT/AST 总胆红素 甲胎蛋白 男 女 <65岁 ≥65岁 <2 ≥2 <252 μm ol /L≥252 μm ol /L<7 μg/L ≥7 μg/L 0分 11 8 3 6 5 10 1 8 3 9 2 1分 42 29 13 32 10 32 10 36 6 33 9 2分 63 36 27 47 16 47 16 59 4 53 10 统计量值 χ²=2.03 χ²=2.21 χ²=1.41 χ²=4.75 χ²=0.53 P值 0.362 0.331 0.495 0.093 0.769 注: LMR为淋巴细胞与单核细胞比值;PLR为血小板与淋巴细胞比值;ALT为丙氨酸转氨酶;AST为天冬氨酸转氨酶表 2 影响116例胰腺导管腺癌患者行胰腺癌根治术后预后的单因素分析
Table 2 Univariate analysis of prognosis in 116 patients undergoing radical resection for pancreatic ductal adenocarcinoma
临床病理因素 赋值 例数 风险比 95%可信区间 P值 性别 男 1 73 1.16 0.77~1.75 0.488 女 2 43 年龄(岁) <65 1 85 0.88 0.55~1.39 0.576 ≥65 2 31 ALT/AST <2 1 89 0.66 0.39~1.10 0.109 ≥2 2 27 总胆红素(μm ol /L)<252.0 1 103 1.75 0.95~3.21 0.072 ≥252.0 2 13 甲胎蛋白(μg/L) <7 1 95 2.52 0.92~6.90 0.073 ≥7 2 21 癌胚抗原(μg/L) <2.6 1 50 1.92 1.26~2.93 0.002 ≥2.6 2 66 CA125(U/mL) <12.4 1 33 1.68 1.04~2.72 0.034 ≥12.4 2 83 CA19‑9(U/mL) <450.9 1 76 2.03 1.33~3.10 0.001 ≥450.9 2 40 LMR‑PLR评分 0分 0 11 0.31 0.22~0.43 <0.001 1分 1 42 2分 2 63 肿瘤长径(cm) <4 1 59 1.58 1.05~2.39 0.029 ≥4 2 57 TNM分期 Ⅰ期 1 48 1.33 1.06~1.68 0.015 Ⅱ期 2 46 Ⅲ期 3 16 Ⅳ期 4 6 手术切缘 R0 0 40 1.38 0.73~2.58 0.323 R1 1 76 肿瘤分化程度 低分化 1 40 0.56 0.37~0.86 0.008 中、高分化 2 76 脉管侵犯 无 1 53 1.21 0.81~1.83 0.354 有 2 63 神经侵犯 无 1 34 0.87 0.55~1.36 0.534 有 2 82 术后化疗 无 1 44 0.62 0.41~0.94 0.023 有 2 72 注: LMR为淋巴细胞与单核细胞比值;PLR为血小板与淋巴细胞比值;ALT为丙氨酸转氨酶;AST为天冬氨酸转移酶表 3 影响116例胰腺导管腺癌患者行胰腺癌根治术后预后的多因素分析
Table 3 Multivariate analysis of prognosis in 116 patients undergoing radical resection for pancreatic ductal adenocarcinoma
临床病理因素 b值 标准误 Wald值 风险比 95%可信区间 P值 癌胚抗原 0.47 0.23 4.21 1.61 1.02~2.54 0.040 CA125 -0.09 0.27 0.10 0.92 0.54~1.56 0.754 CA19‑9 0.63 0.24 7.06 1.88 1.18~3.00 0.008 LMR‑PLR评分 -1.32 0.19 47.36 0.27 0.19~0.39 <0.001 肿瘤长径 0.63 0.26 5.93 1.87 1.13~3.09 0.015 TNM分期 -0.07 0.14 0.27 0.93 0.70~1.23 0.606 肿瘤分化程度 -0.17 0.23 0.53 0.84 0.53~1.33 0.465 术后化疗 -0.23 0.22 1.13 0.79 0.52~1.22 0.288 注: LMR为淋巴细胞与单核细胞比值;PLR为血小板与淋巴细胞比值 -
[1] AnsariD, TingstedtB, AnderssonB, et al. Pancreatic cancer: yesterday, today and tomorrow[J]. Future Oncol,2016,12(16):1929‑1946. DOI: 10.2217/fon-2016-0010.
[2] IlicM, IlicI. Epidemiology of pancreatic cancer[J]. World J Gastroenterol,2016,22(44):9694‑9705. DOI: 10.3748/wjg.v22.i44.9694.
[3] 中国临床肿瘤学会胰腺癌专家委员会.胰腺癌综合诊治中国专家共识(2014年版)[J].临床肝胆病杂志,2014,30(10):970-980. DOI: 10.3969/j.issn.1001-5256.2014.10.002. [4] YangH, LiuP, ZhangJ, et al. Long noncoding RNA MIR31HG exhibits oncogenic property in pancreatic ductal adenocarcinoma and is negatively regulated by miR‑193b[J]. Oncogene,2016,35(28):3647‑3657. DOI:10.1038/onc.2015. 430.
[5] DhillonJ, BetancourtM. Pancreatic ductal adenocarcinoma[J]. Monogr Clin Cytol,2020,26:74‑91. DOI:10.1159/0004 55736.
[6] GandhiNS, FeldmanMK, LeO, et al. Imaging mimics of pancreatic ductal adenocarcinoma[J]. Abdom Radiol (NY),2018,43(2):273‑284. DOI: 10.1007/s00261-017-1330-1.
[7] BalkwillF, MantovaniA. Inflammation and cancer: back to Virchow?[J]. Lancet,2001,357(9255):539‑545. DOI:10.10 16/S0140-6736(00)04046-0.
[8] SinghN, BabyD, RajguruJP, et al. Inflammation and cancer[J]. Ann Afr Med,2019,18(3):121‑126. DOI: 10.4103/aam.aam_56_18.
[9] SiderasK, BraatH, KwekkeboomJ, et al. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies[J]. Cancer Treat Rev,2014,40(4):513‑522. DOI: 10.1016/j.ctrv.2013.11.005.
[10] TempletonAJ, McNamaraMG, ŠerugaB, et al. Prognostic role of neutrophil‑to‑lymphocyte ratio in solid tumors: a systematic review and meta‑analysis[J]. J Natl Cancer Inst,2014, 106(6):dju124. DOI: 10.1093/jnci/dju124.
[11] 赵彦,祝淑钗,沈文斌,等.系统免疫炎症指数对食管癌放疗患者预后的影响[J].肿瘤,2021,41(6):409-417. DOI:10.37 81/j.issn.1000-7431.2021.2012-1140. [12] 苏日新,朱静雅,吴书胜,等.外周血NLR、PLR和SII对RAS野生型转移性结直肠癌西妥昔单抗为基础一线治疗疗效的预测作用[J].肿瘤,2022,42(10):681-691. DOI: 10.3781/j.issn.1000-7431.2022.2112-0981. [13] 朱静雅,苏日新,葛菁茹,等.术前血液炎性指标及临床特征与直肠癌肺转移患者预后的关联[J].肿瘤,2021,41(8):550-558. DOI: 10.3781/j.issn.1000-7431.2021.2106-0383. [14] AsaokaT, MiyamotoA, MaedaS, et al. Prognostic impact of preoperative NLR and CA19‑9 in pancreatic cancer[J]. Pancreatology,2016,16(3):434‑440. DOI:10.1016/j.pan. 2015.10.006.
[15] XiangZJ, HuT, WangY, et al. Neutrophil‑lymphocyte ratio (NLR) was associated with prognosis and immunomodulatory in patients with pancreatic ductal adenocarcinoma (PDAC)[J]. Biosci Rep,2020,40(6):BSR20201190. DOI:10. 1042/BSR20201190.
[16] AllenJ, CernikC, BajwaS, et al. Association of neutrophil, platelet, and lymphocyte ratios with the prognosis in unresectable and metastatic pancreatic cancer[J]. J Clin Med,2020,9(10):3283. DOI: 10.3390/jcm9103283.
[17] Toledano‑FonsecaM, CanoMT, IngaE, et al. The combination of neutrophil‑lymphocyte ratio and platelet-lymphocyte ratio with liquid biopsy biomarkers improves progno-sis prediction in metastatic pancreatic cancer[J]. Cancers (Basel),2021,13(6):1210. DOI: 10.3390/cancers13061210.
[18] HuRJ, MaJY, HuG. Lymphocyte‑to‑monocyte ratio in pancreatic cancer: prognostic significance and meta‑analysis[J]. Clin Chim Acta,2018,481:142‑146. DOI:10.1016/j.cca. 2018.03.008.
[19] LinS, FangY, MoZ, et al. Prognostic value of lymphocyte to monocyte ratio in pancreatic cancer: a systematic review and meta‑analysis including 3338 patients[J]. World J Surg Oncol,2020,18(1):186. DOI: 10.1186/s12957-020-01962-0.
[20] 李昂庆.PLR‑LMR评分系统对胃癌患者淋巴结转移的诊断价值以及评估预后的作用[D].合肥:安徽医科大学,2021. [21] 王敏.术前NLR、LMR、PLR以及LMR‑PLR评分对非小细胞肺癌的预后价值[D].济南:山东第一医科大学,2019. [22] ChenX, LiuF, XueQ, et al. Metastatic pancreatic cancer: mechanisms and detection (Review)[J]. Oncol Rep,2021, 46(5):231. DOI: 10.3892/or.2021.8182.
[23] 张正奎,杨尹默.分子靶向时代胰腺癌综合诊治的现状与展望[J].中华外科杂志,2020,58(1):22-26. DOI: 10.3760/cma.j.issn.0529-5815.2020.01.006. [24] ParkW, ChawlaA, O′ReillyEM. Pancreatic cancer: a review[J]. JAMA,2021,326(9):851‑862. DOI:10.1001/jama.2021. 13027.
[25] BakasaW, ViririS. Pancreatic cancer survival prediction: a survey of the state‑of‑the‑art[J]. Comput Math Methods Med,2021,2021:1188414. DOI: 10.1155/2021/1188414.
[26] 中华医学会消化内镜学分会胰腺疾病协作组.中国胰腺癌高危人群早期筛查和监测共识意见(2021,南京)[J].临床肝胆病杂志,2022,38(5):1016-1022. DOI: 10.3969/j.issn.1001-5256.2022.05.008. [27] 施锦波,励夏炜,吴育连.基于SEER数据库分析早期胰腺导管腺癌患者能否从常用术后化疗方案中获益[J].浙江大学学报:医学版,2021,50(3):375‑382. DOI: 10.3724/zdxbyxb-2021-0194. [28] 国家卫生健康委办公厅.胰腺癌诊疗指南(2022年版)[J].临床肝胆病杂志,2022,38(5):1006-1015. DOI: 10.3969/j.issn.1001-5256.2022.05.007. [29] 中国癌症研究基金会介入医学委员会,国家放射与治疗临床医学研究中心,国家介入医学创新联盟(筹).晚期胰腺癌介入治疗临床操作指南(试行)(第六版)[J].临床肝胆病杂志,2022,38(6):1242-1251. DOI:10.3969/j.issn.1001-5256. 2022.06.007. [30] 吴佳懿,段云捷.局部晚期胰腺癌治疗技术的进展[J].中国现代普通外科进展,2023,26(6):460-462. DOI: 10.3969/j.issn.1009-9905.2023.06.009. [31] 洪建国,孙祺,梁本甲,等.胰腺癌手术治疗的临床评估(附89例分析)[J].中国现代普通外科进展,2015,18(1):43-46. DOI: 10.3969/j.issn.1009-9905.2015.01.011. [32] 王雪,史爽,杜鲁涛,等.7-lncRNA风险评估模型在胰腺癌预后判断中的价值[J].中国现代普通外科进展,2020,23(5):337-343. DOI: 10.3969/j.issn.1009-9905.2020.05.001. [33] DiakosCI, CharlesKA, McMillanDC, et al. Cancer‑related inflammation and treatment effectiveness[J]. Lancet Oncol,2014,15(11):e493‑e503. DOI: 10.1016/S1470-2045(14)70263-3.
[34] KhandiaR, MunjalA. Interplay between inflammation and cancer[J]. Adv Protein Chem Struct Biol,2020,119:199-245. DOI: 10.1016/bs.apcsb.2019.09.004.
[35] PadoanA, PlebaniM, BassoD. Inflammation and pancrea-tic cancer: focus on metabolism, cytokines, and immunity[J]. Int J Mol Sci,2019,20(3):676. DOI:10.3390/ijms2003 0676.
[36] SalujaA, MaitraA. Pancreatitis and pancreatic cancer[J]. Gastroenterology,2019,156(7):1937‑1940. DOI: 10.1053/j.gastro.2019.03.050.
[37] UmansDS, HoogenboomSA, SissinghNJ, et al. Pancreatitis and pancreatic cancer: a case of the chicken or the egg[J]. World J Gastroenterol,2021,27(23):3148‑3157. DOI: 10.3748/wjg.v27.i23.3148.
[38] HilbigA, OettleH. Transforming growth factor beta in pancreatic cancer[J]. Curr Pharm Biotechnol,2011,12(12):2158‑2164. DOI: 10.2174/138920111798808356.
[39] 秦雯,杨建宇,陈泰文,等.胰腺癌组织中L1细胞黏附分子和转化生长因子β1的表达及意义[J].临床肝胆病杂志,2021,37(6):1404-1408. DOI:10.3969/j.issn.1001-5256.2021.06. 035. [40] 张浩,刘林勋,赵占学,等.转化生长因子β在胰腺癌发生发展中的作用[J].临床肝胆病杂志,2022,38(12):2892-2896. DOI: 10.3969/j.issn.1001-5256.2022.12.041. [41] OlingyCE, DinhHQ, HedrickCC. Monocyte heterogeneity and functions in cancer[J]. J Leukoc Biol,2019,106(2):309-322. DOI: 10.1002/JLB.4RI0818-311R.
[42] HanahanD, WeinbergRA. Hallmarks of cancer: the next generation[J]. Cell,2011,144(5):646‑674. DOI: 10.1016/j.cell.2011.02.013.
[43] SchlesingerM. Role of platelets and platelet receptors in cancer metastasis[J]. J Hematol Oncol,2018,11(1):125. DOI: 10.1186/s13045-018-0669-2.
[44] SierkoE, WojtukiewiczMZ. Platelets and angiogenesis in malignancy[J]. Semin Thromb Hemost,2004,30(1):95-108. DOI: 10.1055/s-2004-822974.
[45] BrockmannMA, GieseA, MuellerK, et al. Preoperative thrombocytosis predicts poor survival in patients with glioblastoma[J]. Neuro Oncol,2007,9(3):335‑342. DOI:10. 1215/15228517-2007-013.
[46] VarkeyJ, NicolaidesT. Tumor‑educated platelets: a review of current and potential applications in solid tumors[J]. Cureus,2021,13(11):e19189. DOI: 10.7759/cureus.19189.
[47] LiuY, ZhangY, DingY, et al. Platelet‑mediated tumor metas-tasis mechanism and the role of cell adhesion molecules[J]. Crit Rev Oncol Hematol,2021,167:103502. DOI:10.10 16/j.critrevonc.2021.103502.
[48] 周发权,陈师,孙红玉,等.系统免疫炎症指数与胰腺癌预后的相关性[J].临床肝胆病杂志,2022,38(11):2669-2672. DOI: 10.3969/j.issn.1001-5256.2022.11.046. [49] MuschelliJ. ROC and AUC with a binary predictor: a potentially misleading metric[J]. J Classif,2020,37(3):696‑708. DOI: 10.1007/s00357-019-09345-1.