• “中国科技期刊卓越行动计划”中文领军期刊
  • 百种中国杰出学术期刊
  • 中国百强报刊
  • RCCSE中国核心学术期刊(A+)
  • 中国自然科学类核心期刊
  • 中国高校百佳科技期刊
  • 中国精品科技期刊
  • 中国科技论文统计源期刊
  • 中华医学会优秀期刊
  • 中国精品科技期刊顶尖学术论文(5000)项目来源期刊
  • 入选中国高质量科技期刊分级目录(消化病学)T1级
  • 入选《中国学术期刊影响因子年报(自然科学与工程技术)》Q1区
  • 入选《科技期刊世界影响力指数(WJCI)报告(2022)》
  • “中国科技期刊卓越行动计划”中文领军期刊
  • 百种中国杰出学术期刊
  • 中国百强报刊
  • RCCSE中国核心学术期刊(A+)
  • 中国自然科学类核心期刊
  • 中国高校百佳科技期刊
  • 中国精品科技期刊
  • 中国科技论文统计源期刊
  • 中华医学会优秀期刊
  • 中国精品科技期刊顶尖学术论文(5000)项目来源期刊
  • 入选中国高质量科技期刊分级目录(消化病学)T1级
  • 入选《中国学术期刊影响因子年报(自然科学与工程技术)》Q1区
  • 入选《科技期刊世界影响力指数(WJCI)报告(2022)》

基于磁共振成像检查测量直肠周围脂肪含量构建中低位直肠癌根治术后复发预测模型及其应用价值

秦佳明, 赵雨蒙, 张芮, 于逸飞, 于紫婷, 郑世琪, 张洪琪, 李淑贤, 王文红

秦佳明, 赵雨蒙, 张芮, 等. 基于磁共振成像检查测量直肠周围脂肪含量构建中低位直肠癌根治术后复发预测模型及其应用价值[J]. 中华消化外科杂志, 2023, 22(7): 924-932. DOI: 10.3760/cma.j.cn115610-20230608-00269
引用本文: 秦佳明, 赵雨蒙, 张芮, 等. 基于磁共振成像检查测量直肠周围脂肪含量构建中低位直肠癌根治术后复发预测模型及其应用价值[J]. 中华消化外科杂志, 2023, 22(7): 924-932. DOI: 10.3760/cma.j.cn115610-20230608-00269
Qin JiaMing, Zhao Yumeng, Zhang Rui, et al. Construction of recurrence prediction model after radical resection of middle and low rectal cancer based on magnetic resonance imaging measurement of perirectal fat content and its application value[J]. Chinese Journal of Digestive Surgery, 2023, 22(7): 924-932. DOI: 10.3760/cma.j.cn115610-20230608-00269
Citation: Qin JiaMing, Zhao Yumeng, Zhang Rui, et al. Construction of recurrence prediction model after radical resection of middle and low rectal cancer based on magnetic resonance imaging measurement of perirectal fat content and its application value[J]. Chinese Journal of Digestive Surgery, 2023, 22(7): 924-932. DOI: 10.3760/cma.j.cn115610-20230608-00269

基于磁共振成像检查测量直肠周围脂肪含量构建中低位直肠癌根治术后复发预测模型及其应用价值

基金项目: 

天津市卫生健康委员会科技项目 ZC 20229

天津市卫生信息学会科技项目 TJHIA‑2022‑009

详细信息
    通讯作者:

    王文红,Email:wangwenhong1970@126.com

Construction of recurrence prediction model after radical resection of middle and low rectal cancer based on magnetic resonance imaging measurement of perirectal fat content and its application value

Funds: 

Science and Technology Project of Tianjin Municipal Health Commission ZC 20229

Science and Technology Project of Tianjin Health Information Society TJHIA‑2022‑009

More Information
  • 摘要:
    目的 

    探讨中低位直肠癌根治术后复发的影响因素,以及基于磁共振成像(MRI)检查测量直肠周围脂肪含量构建预测模型及其应用价值。

    方法 

    采用回顾性队列研究方法。收集2016年12月至2021年12月天津市人民医院收治的254例中低位直肠癌患者的临床病理资料;男188例,女66例;年龄为(61±9)岁。患者均行直肠癌根治术和盆腔常规MRI检查。观察指标:(1)随访情况及直肠周围脂肪定量测量。(2)中低位直肠癌根治术后肿瘤复发影响因素分析。(3)中低位直肠癌根治术后肿瘤复发列线图预测模型构建及评价。正态分布的计量资料以x±s表示,偏态分布的计量资料以M(范围)或MQ1,Q3)表示。计数资料以绝对数表示。单因素和多因素分析均采用COX回归模型。使用rms软件包(4.1.3版本)生成列线图和校准曲线图,使用survival软件包(4.1.3版本)计算C‑index,采用ggDCA软件包(4.1.3版本)进行决策曲线分析。

    结果 

    (1)随访情况及直肠周围脂肪定量测量。254例患者术后均获得随访,随访时间为41.0(1.0~59.0)个月,随访期间81例术后肿瘤复发,肿瘤复发时间为15.0(1.0~43.0)个月,173例术后肿瘤未复发。81例术后肿瘤复发患者,术前直肠系膜筋膜包裹体积、术前直肠系膜脂肪面积、术前直肠后系膜厚度分别为159.1(68.6,266.5)cm³、17.0(5.1,34.4)cm²、1.2(0.4,3.2)cm;173例术后肿瘤未复发患者上述指标分别为178.5(100.1,310.1)cm³、19.8(5.3,40.2)cm²、1.6(0.3,3.7)cm。(2)中低位直肠癌根治术后肿瘤复发影响因素分析。多因素分析结果显示:肿瘤分化程度为低分化、肿瘤病理学N分期为N1~2期、直肠后系膜厚度≤1.43 cm、磁共振壁外血管侵犯阳性、肿瘤侵犯周围结构是影响中低位直肠癌根治术后肿瘤复发的独立危险因素(风险比=1.64,2.20,3.19,1.69,4.20,95%可信区间为1.03~2.61,1.29~3.74,1.78~5.71,1.02~2.81,2.05~8.63,P<0.05)。(3)中低位直肠癌根治术后肿瘤复发列线图预测模型构建及评价。根据多因素分析结果,纳入肿瘤分化程度、肿瘤病理学N分期、直肠后系膜厚度、磁共振壁外血管侵犯、肿瘤侵犯周围结构,构建中低位直肠癌根治术后肿瘤复发列线图预测模型,得分总和对应术后肿瘤复发概率。列线图的C‑index值为0.80,具有较好的预测精度。校准曲线显示:列线图预测模型的预测能力良好。决策曲线显示:列线图预测模型有明显净获益率时对应预测概率阈值范围较广,该模型具有较好临床实用性。

    结论 

    肿瘤分化程度为低分化、肿瘤病理学N分期为N1~2期、直肠后系膜厚度≤1.43 cm、磁共振壁外血管侵犯阳性、肿瘤侵犯周围结构是影响中低位直肠癌根治术后肿瘤复发的独立危险因素;基于MRI检查测量直肠周围脂肪含量构建其列线图预测模型可良好预测患者术后肿瘤复发情况。

    Abstract:
    Objective 

    To investigate the influencing factors of recurrence after radical resection of middle and low rectal cancer, and to establish a prediction model based on magnetic resonance imaging (MRI) measurement of perirectal fat content and investigate its application value.

    Methods 

    The retrospective cohort study was constructed. The clinicopathological data of 254 patients with middle and low rectal cancer who were admitted to Tianjin Union Medical Center from December 2016 to December 2021 were collected. There were 188 males and 66 females, aged (61±9)years. All patients underwent radical resection of rectal cancer and routine pelvic MRI examina-tion. Observation indicators: (1) follow‑up and quantitative measurement of perirectal fat content; (2) factors influencing tumor recurrence after radical resection of middle and low rectal cancer; (3) construction and evaluation of the nomogram prediction model of tumor recurrence after radical resection of middle and low rectal cancer. Measurement data with normal distribution were represented as Mean±SD, and measurement data with skewed distribution were represented as M(rang) and M(Q1,Q2). Count data were described as absolute numbers. Univariate and multivariate analyses were conducted using the COX regression model. The rms software package (4.1.3 version) was used to construct the nomogram and calibration curve. The survival software package (4.1.3 version) was used to calculate the C‑index. The ggDCA software package (4.1.3 version) was used for decision curve analysis.

    Results 

    (1) Follow‑up and quantitative measurement of perirectal fat content. All 254 patients were followed up for 41.0(range, 1.0‒59.0)months after surgery. During the follow‑up period, there were 81 patients undergoing tumor recurrence with the time to tumor recurrence as 15.0(range, 1.0‒43.0)months, and there were 173 patients without tumor recurrence. The preoperative rectal mesangial fascia envelope volume, preoperative rectal mesangial fat area, preoperative rectal posterior mesangial thickness were 159.1(68.6,266.5)cm³, 17.0(5.1,34.4)cm², 1.2(0.4,3.2)cm in the 81 patients with tumor recurrence, and 178.5(100.1,310.1)cm³, 19.8(5.3,40.2)cm² and 1.6(0.3,3.7)cm in the 173 patients without tumor recurrence. (2) Factors influencing tumor recurrence after radical resection of middle and low rectal cancer. Results of multivariate analysis showed that poorly differentiated tumor, tumor pathological N staging as N1‒N2 stage, rectal posterior mesangial thickness ≤1.43 cm, magnetic resonance extra mural vascular invasion, tumor invasion surrounding structures were independent risk factors of tumor recurrence after radical resection of middle and low rectal cancer (hazard ratio=1.64, 2.20, 3.19, 1.69, 4.20, 95% confidence interval as 1.03‒2.61, 1.29‒3.74, 1.78‒5.71, 1.02‒2.81, 2.05‒8.63, P<0.05). (3) Construction and evaluation of the nomogram prediction model of tumor recurrence after radical resection of middle and low rectal cancer. Based on the results of multivariate analysis, the tumor differentiation, tumor pathological N staging, rectal posterior mesangial thickness, magnetic resonance extra mural vascular invasion, tumor invasion surrounding structures were included to construct the nomogram predic-tion model of tumor recurrence after radical resection of middle and low rectal cancer. The total score of these index in the nomogram prediction model corresponded to the probability of post-operative tumor recurrence. The C‑index of the nomogram was 0.80, indicating that the prediction model with good prediction accuracy. Results of calibration curve showed that the nomogram prediction model with good prediction ability. Results of decision curve showed that the prediction probability threshold range was wide when the nomogram prediction model had obvious net benefit rate, and the model had good clinical practicability.

    Conclusions 

    Poorly differentiated tumor, tumor pathological N staging as N1‒N2 stage, rectal posterior mesangial thickness ≤1.43 cm, magnetic resonance extra mural vascular invasion, tumor invasion surrounding structures are independent risk factors of tumor recurrence after radical resection of middle and low rectal cancer. Nomogram prediction model based on MRI measurement of perirectal fat content can effectively predict the probability of postoperative tumor recurrence.

  • 直肠癌发病率较高,且手术治疗后容易复发[13]。中低位直肠癌因肿瘤位置低、根治手术难度大,术后肿瘤复发转移风险更高,严重影响患者预后[4]。新辅助治疗联合全直肠系膜切除术的标准治疗模式可降低直肠癌患者术后复发率,但仍有10%~15%的患者术后发生难治性骨盆复发[56]。已有的研究结果显示:部分临床及病理因素与直肠癌术后复发相关,但其预测效能有限,且获取术后病理学特征存在滞后性[711]。MRI检查具有较高的软组织分辨能力,可清晰显示直肠系膜及系膜筋膜等结构[12]。已有的研究结果证实:脂肪组织和肿瘤关系密切,可影响患者预后[1320]。已有研究结果显示:运用影像组学方法提取直肠周围脂肪组学特征及定量测量脂肪含量,可预测直肠癌新辅助治疗疗效及远期预后[2122]。本研究回顾性分析2016年12月至2021年12月天津市人民医院收治的254例中低位直肠癌患者的临床病理资料,探讨根治术后复发的影响因素,以及基于MRI检查测量直肠周围脂肪含量构建预测模型及其应用价值。

    采用回顾性队列研究方法。收集254例中低位直肠癌患者的临床病理资料;男188例,女66例;年龄为(61±9)岁。患者均行直肠癌根治术和盆腔常规MRI检查。本研究通过天津市人民医院伦理委员会审批,批号为2021年快审第C15号。患者及家属均签署知情同意书。

    纳入标准:(1)经电子肠镜及术后组织病理学检查明确诊断为中低位直肠癌并行直肠癌根治术。(2)术前肿瘤未转移。(3)临床病理资料完整。

    排除标准:(1)有心、肺、脑、血液系统疾病等手术禁忌证。(2)既往腹腔广泛粘连。(3)合并妊娠。(4)合并其他恶性肿瘤。(5)姑息性切除术。(6)行新辅助治疗。(7)肛管癌、家族性息肉病及多器官、双原发癌。(8)临床病理资料缺失。

    盆腔常规MRI检查设备应用3.0 T超导型MRI扫描设备,18通道体部相控阵表面线圈。患者取仰卧位,扫描范围自髂骨上缘至耻骨联合下缘水平。扫描序列:(1)矢状位快速自旋回波T2加权成像,扫描参数为重复时间/回波时间7 200/96 ms、视野280 mm×280 mm、层厚5 mm、层间距0.5 mm、矩阵320×320。(2)快速自旋回波T2加权成像,上述扫描参数分别为450/86 ms、420 mm×420 mm、6 mm、0.6 mm、384×384。(3)冠状位快速自旋回波 T2加权成像,上述扫描参数分别为3 500/82 ms、300 mm×225 mm、4 mm、0.4 mm、448×336。(4)轴位高分辨率T2加权成像,上述扫描参数分别为5 600/104 ms、200 mm×200 mm、3 mm、0.3 mm、384×384。

    2位具有10年盆腔MRI检查诊断经验的放射科医师双盲独立分析患者MRI检查图像,存在分歧时,通过协商最终确定。测量及评估指标包括:(1)肿瘤位置采用文献[23]的方法测量,即起点为肿瘤下缘,终点为外括约肌下缘连线,测量平行于下段直肠长轴及肛管的折线距离(图1A)。(2)肿瘤最大径:在T2加权成像矢状位上测量肿瘤最大径(图1B)。(3)磁共振环周切缘:根据文献[24]的方法测量。其指在MRI检查测量肿瘤、阳性淋巴结或肿瘤沉积物距离直肠系膜筋膜的最短距离,其<1 mm提示为阳性(图1C)。(4)磁共振壁外血管侵犯(图1D):根据文献[2526]的方法测量。(5)直肠后系膜厚度:在T2加权成像轴位上识别坐骨棘相邻2个平面,分别测量直肠后缘至骶骨前缘的直线距离,2个平面所得值的平均值即为最终肠系膜脂肪厚度(图1E)。(6)直肠系膜脂肪面积:在T2加权成像轴位上识别坐骨棘相邻2个平面,分别测量相应平面直肠系膜筋膜以内及同层直肠横截面面积,两者面积之差为每个平面的直肠系膜脂肪面积,再取2个平面的直肠系膜脂肪面积平均值即最终直肠系膜脂肪面积(图1E)。(7)直肠系膜筋膜包裹体积:在T2加权成像正中矢状位图像上识别距离肛缘10 cm处肠周脂肪平面作为第1个平面,向下至齿状线所在平面作为最后1个平面,运用OsiriX MD Pixmeo Sarl 2015软件(2015版本)勾画各平面肠周脂肪并测量,最后得到相应节段直肠系膜筋膜包裹体积(图1F)。

    图  1  磁共振成像检查评估直肠癌患者影像学相关指标 1A:肿瘤位置测量(红线);1B:肿瘤最大径测量(红线);1C:肿瘤环周切缘阳性(箭头);1D:直肠壁外血管侵犯阳性(箭头);1E:直肠系膜脂肪面积(红色区域)及直肠后系膜厚度测量(黄线);1F:直肠系膜筋膜包裹体积示意图
    Figure  1.  Evaluation of imaging related indicators in rectal cancer patients based on magnetic resonance imaging 1A: Tumor location measurement (red line); 1B: Tumor diameter measurement (red line); 1C: Circumferential resection margin positive (arrow); 1D: Extra mural vascular invasion positive (arrow); 1E: Measurement of rectal mesangial fat area (red area) and rectal posterior mesangial thickness (yellow line); 1F: Diagram of rectal mesangial fascia envelope volume

    观察指标:(1)随访情况及直肠周围脂肪定量测量包括获得随访的患者例数、随访时间、肿瘤复发情况、术前直肠系膜筋膜包裹体积、术前直肠系膜脂肪面积、术前直肠后系膜厚度。(2)中低位直肠癌根治术后肿瘤复发影响因素分析:年龄、性别、BMI、吸烟史、饮酒史、糖尿病史、手术类型、CEA、CA19‑9、Alb、肿瘤占肠腔环周比、肿瘤分化程度、肿瘤病理学T分期、肿瘤病理学N分期、直肠系膜筋膜包裹体积、直肠系膜脂肪面积、直肠后系膜厚度、磁共振壁外血管侵犯、磁共振环周切缘、肿瘤距肛缘距离、肿瘤最大径、肿瘤侵犯周围结构。(3)中低位直肠癌根治术后肿瘤复发列线图预测模型构建及评价:根据多因素分析结果构建中低位直肠癌根治术后肿瘤复发列线图预测模型、计算列线图C‑index值、运用校准曲线和决策曲线评估模型预测效能。

    评价标准:直肠癌术后复发定义为直肠癌患者行根治术后原发灶以外再次出现与直肠癌相关的再发癌。无复发生存时间指从肿瘤切除术后到第1次复发时间。

    采用门诊和电话方式进行随访,了解患者术后生存情况。随访时间截至2021年12月。

    应用IBM SPSS Statistic 22.0统计软件及R软件(4.1.3版本)进行分析。正态分布的计量资料以x±s表示,偏态分布的计量资料以M(范围)或MQ1,Q3)表示。计数资料以绝对数表示。单因素和多因素分析均采用COX回归模型。使用rms软件包(4.1.3版本)生存列线图和校准曲线图,使用survival软件包(4.1.3版本)计算C‑index,采用ggDCA软件包(4.1.3版本)进行决策曲线分析。P<0.05为差异有统计学意义。

    254例患者术后均获得随访,随访时间为41.0(1.0~59.0)个月,随访期间81例术后肿瘤复发,肿瘤复发时间为15.0(1.0~43.0)个月,173例术后肿瘤未复发。81例术后肿瘤复发患者术前直肠系膜筋膜包裹体积、术前直肠系膜脂肪面积、术前直肠后系膜厚度分别为159.1(68.6,266.5)cm³、17.0(5.1,34.4)cm²、1.2(0.4,3.2)cm;173例术后肿瘤未复发患者上述指标分别为178.5(100.1,310.1)cm³、19.8(5.3,40.2)cm²、1.6(0.3,3.7)cm。

    单因素分析结果显示:CEA、CA19‑9、肿瘤分化程度、肿瘤病理学T分期、肿瘤病理学N分期、直肠系膜筋膜包裹体积、直肠系膜脂肪面积、直肠后系膜厚度、磁共振壁外血管侵犯、肿瘤侵犯周围结构是影响中低位直肠癌根治术后肿瘤复发的影响因素(P<0.05);年龄、性别、BMI、吸烟史、饮酒史、糖尿病史、手术类型、Alb、肿瘤占肠腔环周比、磁共振环周切缘、肿瘤距肛缘距离、肿瘤最大径不是影响中低位直肠癌根治术后肿瘤复发的影响因素(P>0.05)。见表1

    表  1  影响254例行中低位直肠癌根治术患者术后肿瘤复发的单因素分析(例)
    Table  1.  Univariate analysis of tumor recurrence in 254 patients undergoing radical resection of middle and low rectal cancer (case)
    临床病理因素赋值术后肿瘤复发(81例)术后肿瘤未复发(173例)风险比(95%可信区间)P
    年龄a---1.00(0.98~1.03)0.888
    性别
    1591291.11(0.68~1.81)0.671
    02244
    体质量指数a---0.96(0.89~1.03)0.246
    吸烟史
    128481.30(0.83~2.06)0.256
    053125
    饮酒史
    132571.24(0.79~1.93)0.349
    049116
    糖尿病史
    110230.92(0.48~1.79)0.807
    071150
    手术类型
    开腹手术137651.15(0.84~1.59)0.285
    腹腔镜手术044108
    癌胚抗原(μg/L)
    >11.34124202.17(1.35~3.50)0.001
    ≤11.34057153
    CA19‑9(kU/L)
    >7.4148791.68(1.08~2.62)0.023
    ≤7.403394
    白蛋白(g/L)
    <40112191.37(0.74~2.54)0.310
    ≥40069154
    肿瘤占肠腔环周比
    ≥1/21671521.57(0.63~3.92)0.333
    <1/201421
    肿瘤分化程度
    中分化和高分化0401342.92(1.89~4.53)<0.001
    低分化14139
    肿瘤病理学T分期
    T3~4期1731193.30(1.59~6.85)0.001
    T1~2期0854
    肿瘤病理学N分期
    N1~2期154533.65(2.30~5.81)<0.001
    N0期027120
    直肠系膜筋膜包裹体积(cm³)
    ≤141.05133272.57(1.65~4.01)<0.001
    >141.05048146
    直肠系膜脂肪面积(cm²)
    ≤15.96140442.26(1.46~3.50)<0.001
    >15.96041129
    直肠后系膜厚度(cm)
    ≤1.43165704.58(2.65~7.92)<0.001
    >1.43016103
    磁共振壁外血管侵犯
    阳性137293.06(1.98~4.75)<0.001
    阴性044144
    磁共振环周切缘
    阳性1461050.90(0.58~1.39)0.625
    阴性03568
    肿瘤距肛缘距离a---1.05(0.94~1.17)0.404
    肿瘤最大径a---1.01(0.86~1.19)0.908
    肿瘤侵犯周围结构
    11015.20(2.66~10.16)<0.001
    071172
    注:a为连续变量,术后肿瘤复发患者年龄、体质量指数、肿瘤距肛缘距离、肿瘤最大径分别为(61±10)岁、(24±3)kg/m2、(6.0±2.1)cm、(4.2±1.4)cm,术后肿瘤未复发患者上述指标分别为(61±9)岁、(25±3)kg/m2、(5.7±1.9)cm、(4.1±1.2)cm;“‒”为此项无
    下载: 导出CSV 
    | 显示表格

    多因素分析结果显示:肿瘤分化程度为低分化、肿瘤病理学N分期为N1~2期、直肠后系膜厚度≤1.43 cm、磁共振壁外血管侵犯阳性、肿瘤侵犯周围结构是影响中低位直肠癌根治术后肿瘤复发的独立危险因素(P<0.05)。见表2

    表  2  影响254例行中低位直肠癌根治术患者术后肿瘤复发的多因素分析
    Table  2.  Multivariate analysis of tumor recurrence in 254 patients undergoing radical resection of middle and low rectal cancer
    临床病理因素b标准误Wald风险比95%可信区间P
    肿瘤分化程度为低分化0.490.244.271.641.03~2.610.039
    肿瘤病理学N分期为N1~2期0.790.278.402.201.29~3.740.004
    直肠后系膜厚度≤1.43 cm1.160.3015.293.191.78~5.71<0.001
    磁共振壁外血管侵犯阳性0.530.264.081.691.02~2.810.043
    肿瘤侵犯周围结构1.440.3715.314.202.05~8.63<0.001
    下载: 导出CSV 
    | 显示表格

    根据多因素分析结果,纳入肿瘤分化程度、肿瘤病理学N分期、直肠后系膜厚度、磁共振壁外血管侵犯、肿瘤侵犯周围结构,构建中低位直肠癌根治术后肿瘤复发列线图预测模型,得分总和对应术后肿瘤复发概率。见图2

    图  2  行中低位直肠癌根治术患者术后肿瘤复发列线图预测模型
    Figure  2.  Nomogram prediction model of tumor recurrence in pati⁃ents after radical resection of middle and low rectal cancer

    列线图的C‑index值为0.80,具有较好的预测精度。校准曲线显示:列线图预测模型的预测能力良好。见图3。决策曲线显示:列线图预测模型有明显净获益率时对应预测概率阈值范围较广,该模型具有较好临床实用性。见图4

    图  3  中低位直肠癌患者术后肿瘤复发的校准曲线
    Figure  3.  Calibration curve of nomogram prediction model in predicting postoperative recurrence of middle and low rectal cancer
    图  4  中低位直肠癌患者术后肿瘤复发的临床决策曲线
    Figure  4.  Clinical decision curve of nomogram prediction model in predicting postoperative recurrence of middle and low rectal cancer

    中低位直肠癌根治术后肿瘤复发是直肠癌治疗失败的主要原因之一。了解直肠癌根治术后肿瘤复发人群的临床及影像学特点,及时调整随访和治疗策略,利于改善患者预后[27]。已有的研究结果显示:肿瘤低分化、肿瘤分期晚及壁外血管侵犯阳性均会增加患者术后复发转移风险[2829]

    肿瘤与周围脂肪组织的相互作用备受关注[21,27,30]。本研究结果显示:直肠后系膜厚度≤1.43 cm是影响中低位直肠癌根治术后肿瘤复发的独立危险因素。这与既往研究结果一致[31]。这可能与轻度肥胖或超重患者(包括内脏脂肪较丰富患者)拥有足够营养储备,能够抵抗术后化疗的不良反应和其他并发症,增加术后化疗概率,降低术后肿瘤复发转移有关[32]。直肠周围脂肪可能在肿瘤周围形成屏障作用,阻挡肿瘤向外侵袭,且直肠系膜脂肪含量越多可增加患者环周切缘阴性率[31,33]。直肠系膜脂肪也可以作为局部肿瘤扩散的缓冲剂,防止直肠系膜内微淋巴结转移[3435]。直肠癌术后肿瘤复发率降低,可能与脂肪组织的内分泌作用相关。Murono等[36]的研究结果显示:脂肪细胞具有分泌作用,可以在周围形成微环境,这种微环境可阻碍肿瘤细胞生长,但其具体生化以及免疫相关作用机制还有待进一步研究。Dirat等[37]的研究结果显示:肿瘤周围脂肪组织受肿瘤影响会出现脂质含量下降,脂肪细胞标志物表达降低,以及主要由促炎性脂肪因子和细胞外基质相关分子过度表达等变化。但也有研究结果显示:较大直肠后系膜厚度和骨盆跨度会增加术中出血量及手术时间,从而增加手术难度,导致术后复发风险提高[38]

    列线图模型可预测患者预后以及淋巴结转移[3946]。已有的术后肿瘤复发预测模型构建均基于肿瘤病理学相关因素。但病理学指标的获取在时间上相对滞后,不能及时干预处理,导致治疗效果欠佳。本研究融合直肠周围脂肪含量相关指标构建中低位直肠癌根治术后肿瘤复发列线图预测模型,可快捷、直观评估患者术后肿瘤复发概率,具有较好的预测价值。临床医师可根据该模型对患者进行肿瘤复发风险分层,筛选高危患者,并制订个性化随访、治疗策略。

    综上,肿瘤分化程度为低分化、肿瘤病理学N分期为N1~2期、直肠后系膜厚度≤1.43 cm、磁共振壁外血管侵犯阳性、肿瘤侵犯周围结构是影响中低位直肠癌根治术后肿瘤复发的独立危险因素;基于MRI检查测量直肠周围脂肪含量构建其列线图预测模型可良好预测患者术后肿瘤复发情况。

    秦佳明:研究设计与实施,数据收集与分析和稿件撰写,统计分析;赵雨蒙:研究设计,数据收集和文章修改;于逸飞、张芮、于紫婷:数据收集及统计分析;郑世琪:研究实施和统计分析;张洪琪、李淑贤:研究设计与实施,采集数据;王文红:研究设计与实施,文章修改和经费支持
    所有作者均声明不存在利益冲突
    秦佳明, 赵雨蒙, 张芮, 等. 基于磁共振成像检查测量直肠周围脂肪含量构建中低位直肠癌根治术后复发预测模型及其应用价值[J]. 中华消化外科杂志, 2023, 22(7): 924-932. DOI: 10.3760/cma.j.cn115610-20230608-00269.

    http://journal.yiigle.com/LinkIn.do?linkin_type=cma&DOI=10.3760/cma.j.cn115610-20230608-23269

  • 图  1   磁共振成像检查评估直肠癌患者影像学相关指标 1A:肿瘤位置测量(红线);1B:肿瘤最大径测量(红线);1C:肿瘤环周切缘阳性(箭头);1D:直肠壁外血管侵犯阳性(箭头);1E:直肠系膜脂肪面积(红色区域)及直肠后系膜厚度测量(黄线);1F:直肠系膜筋膜包裹体积示意图

    Figure  1.   Evaluation of imaging related indicators in rectal cancer patients based on magnetic resonance imaging 1A: Tumor location measurement (red line); 1B: Tumor diameter measurement (red line); 1C: Circumferential resection margin positive (arrow); 1D: Extra mural vascular invasion positive (arrow); 1E: Measurement of rectal mesangial fat area (red area) and rectal posterior mesangial thickness (yellow line); 1F: Diagram of rectal mesangial fascia envelope volume

    图  2   行中低位直肠癌根治术患者术后肿瘤复发列线图预测模型

    Figure  2.   Nomogram prediction model of tumor recurrence in pati⁃ents after radical resection of middle and low rectal cancer

    图  3   中低位直肠癌患者术后肿瘤复发的校准曲线

    Figure  3.   Calibration curve of nomogram prediction model in predicting postoperative recurrence of middle and low rectal cancer

    图  4   中低位直肠癌患者术后肿瘤复发的临床决策曲线

    Figure  4.   Clinical decision curve of nomogram prediction model in predicting postoperative recurrence of middle and low rectal cancer

    表  1   影响254例行中低位直肠癌根治术患者术后肿瘤复发的单因素分析(例)

    Table  1   Univariate analysis of tumor recurrence in 254 patients undergoing radical resection of middle and low rectal cancer (case)

    临床病理因素赋值术后肿瘤复发(81例)术后肿瘤未复发(173例)风险比(95%可信区间)P
    年龄a---1.00(0.98~1.03)0.888
    性别
    1591291.11(0.68~1.81)0.671
    02244
    体质量指数a---0.96(0.89~1.03)0.246
    吸烟史
    128481.30(0.83~2.06)0.256
    053125
    饮酒史
    132571.24(0.79~1.93)0.349
    049116
    糖尿病史
    110230.92(0.48~1.79)0.807
    071150
    手术类型
    开腹手术137651.15(0.84~1.59)0.285
    腹腔镜手术044108
    癌胚抗原(μg/L)
    >11.34124202.17(1.35~3.50)0.001
    ≤11.34057153
    CA19‑9(kU/L)
    >7.4148791.68(1.08~2.62)0.023
    ≤7.403394
    白蛋白(g/L)
    <40112191.37(0.74~2.54)0.310
    ≥40069154
    肿瘤占肠腔环周比
    ≥1/21671521.57(0.63~3.92)0.333
    <1/201421
    肿瘤分化程度
    中分化和高分化0401342.92(1.89~4.53)<0.001
    低分化14139
    肿瘤病理学T分期
    T3~4期1731193.30(1.59~6.85)0.001
    T1~2期0854
    肿瘤病理学N分期
    N1~2期154533.65(2.30~5.81)<0.001
    N0期027120
    直肠系膜筋膜包裹体积(cm³)
    ≤141.05133272.57(1.65~4.01)<0.001
    >141.05048146
    直肠系膜脂肪面积(cm²)
    ≤15.96140442.26(1.46~3.50)<0.001
    >15.96041129
    直肠后系膜厚度(cm)
    ≤1.43165704.58(2.65~7.92)<0.001
    >1.43016103
    磁共振壁外血管侵犯
    阳性137293.06(1.98~4.75)<0.001
    阴性044144
    磁共振环周切缘
    阳性1461050.90(0.58~1.39)0.625
    阴性03568
    肿瘤距肛缘距离a---1.05(0.94~1.17)0.404
    肿瘤最大径a---1.01(0.86~1.19)0.908
    肿瘤侵犯周围结构
    11015.20(2.66~10.16)<0.001
    071172
    注:a为连续变量,术后肿瘤复发患者年龄、体质量指数、肿瘤距肛缘距离、肿瘤最大径分别为(61±10)岁、(24±3)kg/m2、(6.0±2.1)cm、(4.2±1.4)cm,术后肿瘤未复发患者上述指标分别为(61±9)岁、(25±3)kg/m2、(5.7±1.9)cm、(4.1±1.2)cm;“‒”为此项无
    下载: 导出CSV

    表  2   影响254例行中低位直肠癌根治术患者术后肿瘤复发的多因素分析

    Table  2   Multivariate analysis of tumor recurrence in 254 patients undergoing radical resection of middle and low rectal cancer

    临床病理因素b标准误Wald风险比95%可信区间P
    肿瘤分化程度为低分化0.490.244.271.641.03~2.610.039
    肿瘤病理学N分期为N1~2期0.790.278.402.201.29~3.740.004
    直肠后系膜厚度≤1.43 cm1.160.3015.293.191.78~5.71<0.001
    磁共振壁外血管侵犯阳性0.530.264.081.691.02~2.810.043
    肿瘤侵犯周围结构1.440.3715.314.202.05~8.63<0.001
    下载: 导出CSV
  • [1]

    HuangQ, ZouMH, WeiJC, et al. Risk factors for recurrence of radically resected mucinous colorectal adenocarcinoma[J]. Cancer Manag Res,2021,13:4777‑4790. DOI: 10.2147/CMAR.S313627.

    [2] 王锡山.中美结直肠癌流行病学特征对比及防控策略分析[J/CD].中华结直肠疾病电子杂志,2019,8(1):1‑5. DOI:10. 3877/cma.j.issn.2095-3224.2019.01.001.
    [3]

    PelvEx Collaborative Factors affecting outcomes following pelvic exenteration for locally recurrent rectal cancer[J]. Br J Surg,2018,105(6):650‑657. DOI: 10.1002/bjs.10734.

    [4]

    Al‑HaidariG, SkovlundE, UndsethC, et al. Re‑irradiation for recurrent rectal cancer‒a single‑center experience[J]. Acta Oncol,2020,59(5):534‑540. DOI:10.1080/02841 86X.2020.1725111.

    [5]

    KimMJ, HurBY, LeeES, et al. Prediction of lateral pelvic lymph node metastasis in patients with locally advanced rectal cancer with preoperative chemoradiotherapy: focus on MR imaging findings[J]. PLoS One,2018,13(4):e0195815. DOI: 10.1371/journal.pone.0195815.

    [6] 熊健,郑历明,余汉城,等.3.0T高分辨率MRI诊断直肠癌盆腔侧方淋巴结转移的临床价值[J].实用放射学杂志,2022,38(1):60‑63. DOI: 10.3969/j.issn.1002-1671.2022.01.015.
    [7]

    HidaK, OkamuraR, ParkSY, et al. A new prediction model for local recurrence after curative rectal cancer surgery: development and validation as an Asian collaborative study[J]. Dis Colon Rectum,2017,60(11):1168‑1174. DOI: 10.1097/DCR.0000000000000896.

    [8]

    PengJ, DingY, TuS, et al. Prognostic nomograms for predicting survival and distant metastases in locally advan-ced rectal cancers[J]. PLoS One,2014,9(8):e106344. DOI: 10.1371/journal.pone.0106344.

    [9]

    PatelSA, ChenYH, HornickJL, et al. Early‑stage rectal cancer: clinical and pathologic prognostic markers of time to local recurrence and overall survival after resection[J]. Dis Colon Rectum,2014,57(4):449‑459. DOI:10.1097/DCR. 0b013e3182a70709.

    [10]

    van der LindenR, RijstenbergLL, van der LindenJC, et al. Node negative colorectal cancer patients: assesment of high-risk features on recurrence[J]. Pathol Res Pract,2020,216(9):153034. DOI: 10.1016/j.prp.2020.153034.

    [11]

    BertocchiA, CarloniS, RavendaPS, et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver[J]. Cancer Cell,2021,39(5):708‑724.e11. DOI: 10.1016/j.ccell.2021.03.004.

    [12]

    TorkzadMR, BlomqvistL. The mesorectum: morphome-tric assessment with magnetic resonance imaging[J]. Eur Radiol,2005,15(6):1184‑1191. DOI: 10.1007/s00330-005-2657-5.

    [13]

    QuailDF, DannenbergAJ. The obese adipose tissue microenvironment in cancer development and progression[J]. Nat Rev Endocrinol,2019,15(3):139‑154. DOI: 10.1038/s41574-018-0126-x.

    [14]

    BokobzaE, HinaultC, TiroilleV, et al. The adipose tissue at the crosstalk between EDCs and cancer development[J]. Front Endocrinol (Lausanne),2021,12:691658. DOI:10. 3389/fendo.2021.691658.

    [15]

    AmorS, Iglesias‑de la CruzMC, FerreroE, et al. Peritumoral adipose tissue as a source of inflammatory and angiogenic factors in colorectal cancer[J]. Int J Colorectal Dis,2016,31(2):365‑375. DOI: 10.1007/s00384-015-2420-6.

    [16]

    NetoN, MurariA, OyamaLM, et al. Peritumoural adipose tissue pro‑inflammatory cytokines are associated with tumoural growth factors in cancer cachexia patients[J]. J Cachexia Sarcopenia Muscle,2018,9(6):1101‑1108. DOI: 10.1002/jcsm.12345.

    [17]

    CaoY. Adipocyte and lipid metabolism in cancer drug resis-tance[J]. J Clin Invest,2019,129(8):3006‑3017. DOI:10.11 72/JCI127201.

    [18]

    SmithU. Abdominal obesity: a marker of ectopic fat accumulation[J]. J Clin Invest,2015,125(5):1790‑1792. DOI:10. 1172/JCI81507.

    [19]

    SinghS, SharmaAN, MuradMH, et al. Central adiposity is associated with increased risk of esophageal inflammation, metaplasia, and adenocarcinoma: a systematic review and meta‑analysis[J]. Clin Gastroenterol Hepatol,2013,11(11):1399‑1412.e7. DOI: 10.1016/j.cgh.2013.05.009.

    [20]

    KeumN, LeeDH, KimR, et al. Visceral adiposity and colo-rectal adenomas: dose‑response meta‑analysis of observational studies[J]. Ann Oncol,2015,26(6):1101‑1109. DOI: 10.1093/annonc/mdu563.

    [21]

    JayaprakasamVS, ParoderV, GibbsP, et al. MRI radiomics features of mesorectal fat can predict response to neoadjuvant chemoradiation therapy and tumor recurrence in patients with locally advanced rectal cancer[J]. Eur Radiol,2022,32(2):971‑980. DOI: 10.1007/s00330-021-08144-w.

    [22]

    DilekO, AkkayaH, ParlatanC, et al. Can the mesorectal fat tissue volume be used as a predictive factor in foreseeing the response to neoadjuvant chemoradiotherapy in rectum cancer? A CT‑based preliminary study[J]. Abdom Radiol (NY),2021,46(6):2415‑2422. DOI: 10.1007/s00261-021-02951-x.

    [23]

    Glynne‑JonesR, WyrwiczL, TiretE, et al. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow‑up[J]. Ann Oncol,2017,28(suppl_4):iv22‑iv40. DOI: 10.1093/annonc/mdx224.

    [24]

    SchmollHJ, Van CutsemE, SteinA, et al. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. a personalized approach to clinical decision making[J]. Ann Oncol,2012,23(10):2479‑2516. DOI:10.10 93/annonc/mds236.

    [25]

    BaeJS, KimSH, HurBY, et al. Prognostic value of MRI in assessing extramural venous invasion in rectal cancer: multi‑readers′ diagnostic performance[J]. Eur Radiol,2019,29(8):4379‑4388. DOI: 10.1007/s00330-018-5926-9.

    [26]

    GuC, YangX, ZhangX, et al. The prognostic significance of MRI‑detected extramural venous invasion, mesorectal exten-sion, and lymph node status in clinical T3 mid‑low rectal cancer[J]. Sci Rep,2019,9(1):12523. DOI: 10.1038/s41598-019-47466-0.

    [27]

    XuW, HeY, WangY, et al. Risk factors and risk prediction models for colorectal cancer metastasis and recurrence: an umbrella review of systematic reviews and meta-analyses of observational studies[J]. BMC Med,2020,18(1):172. DOI: 10.1186/s12916-020-01618-6.

    [28]

    ParkH. Predictive factors for early distant metastasis after neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. World J Gastrointest Oncol,2021,13(4):252-264. DOI: 10.4251/wjgo.v13.i4.252.

    [29]

    UemuraM, IkedaM, YamamotoH, et al. Clinicopathological assessment of locally recurrent rectal cancer and relation to local re‑recurrence[J]. Ann Surg Oncol,2011,18(4):1015‑1022. DOI: 10.1245/s10434-010-1435-z.

    [30]

    AnnettS, MooreG, RobsonT. Obesity and cancer metastasis: molecular and translational perspectives[J]. Cancers (Basel),2020,12(12):3798. DOI: 10.3390/cancers12123798.

    [31]

    YoonJ, ChungYE, LimJS, et al. Quantitative assessment of mesorectal fat: new prognostic biomarker in patients with mid‑to‑lower rectal cancer[J]. Eur Radiol,2019,29(3):1240-1247. DOI: 10.1007/s00330-018-5723-5.

    [32]

    SepesiB, GoldKA, CorreaAM, et al. The influence of body mass index on overall survival following surgical resection of non‑small cell lung cancer[J]. J Thorac Oncol,2017,12(8):1280‑1287. DOI: 10.1016/j.jtho.2017.05.010.

    [33]

    AllenSD, GadaV, BluntDM. Variation of mesorectal volume with abdominal fat volume in patients with rectal carcinoma: assessment with MRI[J]. Br J Radiol,2007,80(952):242‑247. DOI: 10.1259/bjr/66311683.

    [34]

    ZhengYC, TangYY, ZhouZG, et al. Tumor micrometastases in mesorectal lymph nodes and their clinical significance in patients with rectal caner[J]. World J Gastroenterol,2004,10(22):3369‑3373. DOI: 10.3748/wjg.v10.i22.3369.

    [35]

    SprengerT, RotheH, BeckerH, et al. Lymph node metastases in rectal cancer after preoperative radiochemotherapy: impact of intramesorectal distribution and residual micro-metastatic involvement[J]. Am J Surg Pathol,2013,37(8):1283‑1289. DOI: 10.1097/PAS.0b013e3182886ced.

    [36]

    MuronoK, KitayamaJ, TsunoNH, et al. Hepatic steatosis is associated with lower incidence of liver metastasis from colorectal cancer[J]. Int J Colorectal Dis,2013,28(8):1065-1072. DOI: 10.1007/s00384-013-1656-2.

    [37]

    DiratB, BochetL, DabekM, et al. Cancer‑associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion[J]. Cancer Res,2011,71(7):2455-2465. DOI: 10.1158/0008-5472.CAN-10-3323.

    [38]

    IshimaruK, KawaiK, NozawaH, et al. Hazard function analysis of metastatic recurrence after colorectal cancer surgery‒A nationwide retrospective study[J]. J Surg Oncol,2021,123(4):1015‑1022. DOI: 10.1002/jso.26378.

    [39]

    ZhaoY, TaoZ, LiL, et al. Predicting biochemical-recurrence-free survival using a three‑metabolic‑gene risk score model in prostate cancer patients[J]. BMC Cancer,2022,22(1):239. DOI: 10.1186/s12885-022-09331-8.

    [40] 赵博,史燕杰,李晓婷,等.基于CT图像的评分模型预测食管鳞癌喉返神经旁淋巴结转移风险[J].中华放射学杂志,2021,55(2):154‑159. DOI: 10.3760/cma.j.cn112149-20200224-00242.
    [41]

    XuMX, TengRL, RuddyTD, et al. The CatLet score: a new coronary angiographic scoring tool accommodating the variable coronary anatomy for the first time[J]. J Thorac Dis,2019,11(12):5199‑5209. DOI: 10.21037/jtd.2019.12.18.

    [42] 林云,陈曦,马龙腾,等.乙型肝炎病毒所致肝细胞癌患者术后预后预测模型的建立与评价[J].肿瘤,2019,39(2):126-132. DOI: 10.3781/j.issn.1000-7431.2019.33.549.
    [43] 孔晨帆,孙建荣,杨佳潞,等.基于可变剪切数据构建食管癌预后风险模型[J].肿瘤,2020,40(12):834-845. DOI:10.37 81/j.issn.1000-7431.2020.33.942.
    [44] 唐豪佑,刘胜,曾新,等.基于SEER数据的原发性小肝癌肝切除术后生存率列线图模型的构建及验证[J].临床肝胆病杂志,2022,38(1):110-116. DOI:10.3969/j.issn.1001-5256. 2022.01.017.
    [45] 奚静,顾美琴,包作伟.基于超声造影LI-RADS特征的肝细胞癌微血管侵犯列线图模型的构建及验证[J].临床肝胆病杂志,2022,38(11):2520-2525. DOI: 10.3969/j.issn.1001-5256.2022.11.016.
    [46] 门昌君,张国梁,邵娴. 基于超声内镜及临床数据预测肝硬化患者出血风险的列线图模型建立[J].中华肝脏病杂志,2021,29(8):759-765. DOI:10.3760/cma.j.cn501113-2020 0808-00443.
图(4)  /  表(2)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-07
  • 网络出版日期:  2024-06-24
  • 刊出日期:  2023-07-19

目录

/

返回文章
返回