Scientific and technological innovation drives the development of minimally invasive surgery
-
摘要:
驱动微创外科发展最重要的角色是科技创新。以腹腔镜技术为代表的现代微创外科经过30余年的发展,手术技术渐趋成熟,各类微创手术普及化,手术难度从极致到极限,手术设备与器械能够满足绝大部分临床手术的需求。微创手术之路已经走到十字路口,唯有科技创新才能换道超车,迎来全新的发展及新的方法、新的世界。而对于创新而言,最重要的不是知识,而是眼界与思路,一个新的技术革命必然会带来产业的变革,未来疾病的手术与治疗将会迎来哪些变革?微创手术会有什么突破?值得拭目以待。笔者结合近期的热点技术在腹腔镜手术中的应用现状,探讨微创外科的发展方向。
Abstract:Scientific and technological innovation is the most important role in driving the development of minimally invasive surgery. After more than 30 years of development, modern mini-mally invasive surgery represented by laparoscopic surgery has gradually matured. Various types of minimally invasive surgeries have been popularized, and the difficulty of surgery has changed from extreme to limit. Surgical equipments and instruments can meet the needs of most clinical operations. The future of minimally invasive surgery has reached a crossroad, and only scientific and technological innovation can promote the development of minimally invasive surgery change lanes and overtake, ushering in new development, new methods, and a new world. For innovation, the most important thing is not knowledge, but vision and ideas. A new technological revolution will inevitably bring about changes in the industry. What changes will be ushered in the operation and treatment of diseases in the future? What will be the breakthrough of minimally invasive surgery? It is worth to wait and see. The authors discuss the development direction of minimally invasive surgery based on the recent application of hot technologies in laparoscopic surgery.
-
所有作者均声明不存在利益冲突郑民华, 李树春, 赵轩. 科技创新驱动微创外科的发展[J]. 中华消化外科杂志, 2023, 22(4): 449-454. DOI: 10.3760/cma.j.cn115610-20230324-00128.
http://journal.yiigle.com/LinkIn.do?linkin_type=cma&DOI=10.3760/cma.j.cn115610-20230324-23128
-
[1] 郑民华,马君俊,洪希周.微创胃肠外科手术热点与进展[J].中华消化外科杂志,2021,20(1):69‑74. DOI: 10.3760/cma.j.cn115610-20210105-00004. [2] 中华医学会外科学分会腹腔镜与内镜外科学组,中国医师协会外科医师分会微创外科医师委员会.4K腹腔镜手术技术中国专家共识(2019版)[J].中国实用外科杂志,2019,39(11):1142‑1144. DOI:10.19538/j.cjps.issn1005-2208.2019. 11.04. [3] MikhailD, SarconaJ, MekhailM, et al. Urologic robotic surgery[J]. Surg Clin North Am,2020,100(2):361‑378. DOI: 10.1016/j.suc.2019.12.003.
[4] FengQ, YuanW, LiT, et al. Robotic versus laparoscopic surgery for middle and low rectal cancer (REAL): short-term outcomes of a multicentre randomised controlled trial[J]. Lancet Gastroenterol Hepatol,2022,7(11):991‑1004. DOI: 10.1016/S2468-1253(22)00248-5.
[5] ShiY, JinJ, QiuW, et al. Short‑term outcomes after robot-assisted vs open pancreaticoduodenectomy after the lear-ning curve[J]. JAMA Surg,2020,155(5):389‑394. DOI:10. 1001/jamasurg.2020.0021.
[6] MayoRM, SummeyJF, WilliamsJE, et al. Qualitative study of oncologists′ views on the CancerLinQ rapid learning system[J]. J Oncol Pract,2017,13(3):e176‑e184. DOI:10.12 00/JOP.2016.016816.
[7] ZhouN, ZhangCT, LvHY, et al. Concordance study between IBM watson for oncology and clinical practice for patients with cancer in China[J]. Oncologist,2019,24(6):812‑819. DOI: 10.1634/theoncologist.2018-0255.
[8] AikemuB, XueP, HongH, et al. Artificial intelligence in decision‑making for colorectal cancer treatment strategy: an observational study of implementing watson for onco-logy in a 250‑case cohort[J]. Front Oncol,2020,10:594182. DOI: 10.3389/fonc.2020.594182.
[9] TakeuchiM, CollinsT, NdagijimanaA, et al. Automatic surgical phase recognition in laparoscopic inguinal hernia repair with artificial intelligence[J]. Hernia,2022,26(6):1669-1678. DOI: 10.1007/s10029-022-02621-x.
[10] MadaniA, NamaziB, AltieriMS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy[J]. Ann Surg,2022,276(2):363‑369. DOI: 10.1097/SLA.0000000000004594.
[11] FazlollahiAM, BakhaidarM, AlsayeghA, et al. Effect of arti-ficial intelligence tutoring vs expert instruction on learning simulated surgical skills among medical students: a randomized clinical trial[J]. JAMA Netw Open,2022,5(2):e2149008. DOI: 10.1001/jamanetworkopen.2021.49008.
[12] ChengK, YouJ, WuS, et al. Artificial intelligence‑based automated laparoscopic cholecystectomy surgical phase recognition and analysis[J]. Surg Endosc,2022,36(5):3160-3168. DOI: 10.1007/s00464-021-08619-3.
[13] BrennanM, PuriS, Ozrazgat‑BaslantiT, et al. Comparing clinical judgment with the MySurgeryRisk algorithm for preoperative risk assessment: a pilot usability study[J]. Surgery,2019,165(5):1035‑1045. DOI:10.1016/j.surg.2019. 01.002.
[14] NudelJ, BisharaAM, de GeusS, et al. Development and validation of machine learning models to predict gastrointestinal leak and venous thromboembolism after weight loss surgery: an analysis of the MBSAQIP database[J]. Surg Endosc,2021,35(1):182‑191. DOI: 10.1007/s00464-020-07378-x.
[15] WangR, WangS, DuanN, et al. From patient‑controlled analgesia to artificial intelligence‑assisted patient-contro-lled analgesia: practices and perspectives[J]. Front Med (Lausanne),2020,7:145. DOI: 10.3389/fmed.2020.00145.
[16] KawadaK, SakaiY. Preoperative, intraoperative and postoperative risk factors for anastomotic leakage after laparoscopic low anterior resection with double stapling technique anastomosis[J]. World J Gastroenterol,2016,22(25):5718‑5727. DOI: 10.3748/wjg.v22.i25.5718.
[17] CaiZH, ZhangQ, FuZW, et al. Magnetic resonance ima-ging-based deep learning model to predict multiple firings in double‑stapled colorectal anastomosis[J]. World J Gastroenterol,2023,29(3):536‑548. DOI: 10.3748/wjg.v29.i3.536.
[18] KungTH, CheathamM, MedenillaA, et al. Performance of ChatGPT on USMLE: potential for AI‑assisted medical education using large language models[J]. PLOS Digit Health,2023,2(2):e0000198. DOI: 10.1371/journal.pdig.0000198.
[19] AhmedF, JahagirdarV, GudapatiS, et al. Three-dimensional visualization and virtual reality simulation role in hepatic surgery: further research warranted[J]. World J Gastrointest Surg,2022,14(7):723‑726. DOI:10.4240/wjgs. v14.i7.723.
[20] SakamotoE, Safatle‑RibeiroAV, JrUR. Advances in surgical techniques for gastric cancer: indocyanine green and near‑infrared fluorescence imaging. Is it ready for prime time?[J]. Chin J Cancer Res,2022,34(6):587‑591. DOI:10. 21147/j.issn.1000-9604.2022.06.06.
[21] ChenQY, XieJW, ZhongQ, et al. Safety and efficacy of indocyanine green tracer‑guided lymph node dissection during laparoscopic radical gastrectomy in patients with gastric cancer: a randomized clinical trial[J]. JAMA Surg,2020,155(4):300‑311. DOI: 10.1001/jamasurg.2019.6033.
[22] KimYW, MinJS, YoonHM, et al. Laparoscopic sentinel node navigation surgery for stomach preservation in patients with early gastric cancer: a randomized clinical trial[J]. J Clin Oncol,2022,40(21):2342‑2351. DOI:10.1200/JCO.21. 02242.
[23] WeisslederR. Molecular imaging in cancer[J]. Science,2006,312(5777):1168‑1171. DOI: 10.1126/science.1125949.
[24] JamesML, GambhirSS. A molecular imaging primer: moda-lities, imaging agents, and applications[J]. Physiol Rev,2012,92(2):897‑965. DOI: 10.1152/physrev.00049.2010.
[25] BećKB, GrabskaJ, HuckCW. Near‑infrared spectroscopy in bio‑applications[J]. Molecules,2020,25(12):2948. DOI:10. 3390/molecules25122948.
[26] JiangJX, KeatingJJ, JesusEM, et al. Optimization of the enhanced permeability and retention effect for near-infrared imaging of solid tumors with indocyanine green[J]. Am J Nucl Med Mol Imaging,2015,5(4):390‑400.
[27] ChoiHS, LiuW, LiuF, et al. Design considerations for tumour‑targeted nanoparticles[J]. Nat Nanotechnol,2010, 5(1):42‑47. DOI: 10.1038/nnano.2009.314.
[28] MieogJ, AchterbergFB, ZlitniA, et al. Fundamentals and developments in fluorescence‑guided cancer surgery[J]. Nat Rev Clin Oncol,2022,19(1):9‑22. DOI: 10.1038/s41571-021-00548-3.
[29] GutowskiM, FrameryB, BoonstraMC, et al. SGM‑101: an innovative near‑infrared dye‑antibody conjugate that targets CEA for fluorescence‑guided surgery[J]. Surg Oncol,2017,26(2):153‑162. DOI: 10.1016/j.suronc.2017.03.002.
[30] BoogerdL, HoogstinsC, SchaapDP, et al. Safety and effectiveness of SGM‑101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: a dose‑escalation pilot study[J]. Lancet Gastroenterol Hepatol,2018,3(3):181‑191. DOI: 10.1016/S2468-1253(17)30395-3.
[31] MeijerR, de ValkKS, DekenMM, et al. Intraoperative detec-tion of colorectal and pancreatic liver metastases using SGM‑101, a fluorescent antibody targeting CEA[J]. Eur J Surg Oncol,2021,47(3Pt B):667‑673. DOI:10.1016/j.ejso. 2020.10.034.
[32] RosenthalEL, MooreLS, TipirneniK, et al. Sensitivity and specificity of cetuximab‑IRDye800CW to identify regional metastatic disease in head and neck cancer[J]. Clin Cancer Res,2017,23(16):4744‑4752. DOI: 10.1158/1078-0432.CCR-16-2968.
[33] HarlaarNJ, KollerM, de JonghSJ, et al. Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colo-rectal origin: a single‑centre feasibility study[J]. Lancet Gastroenterol Hepatol,2016,1(4):283‑290. DOI: 10.1016/S2468-1253(16)30082-6.
[34] MillerSE, TummersWS, TeraphongphomN, et al. First-in-human intraoperative near‑infrared fluorescence imaging of glioblastoma using cetuximab‑IRDye800[J]. J Neurooncol,2018,139(1):135‑143. DOI: 10.1007/s11060-018-2854-0.
[35] WarramJM, de BoerE, SoraceAG, et al. Antibody‑based imaging strategies for cancer[J]. Cancer Metastasis Rev,2014,33(2‑3):809‑822. DOI: 10.1007/s10555-014-9505-5.
[36] de ValkKS, DekenMM, HandgraafH, et al. First‑in‑human assessment of cRGD‑ZW800‑1, a zwitterionic, integrin-targeted, near‑infrared fluorescent peptide in colon carcinoma[J]. Clin Cancer Res,2020,26(15):3990‑3998. DOI:10. 1158/1078-0432.CCR-19-4156.
[37] MahalingamSM, KularatneSA, MyersCH, et al. Evaluation of novel tumor‑targeted near‑infrared probe for fluorescence-guided surgery of cancer[J]. J Med Chem,2018,61(21):9637‑9646. DOI: 10.1021/acs.jmedchem.8b01115.
[38] HeS, SongJ, QuJ, et al. Crucial breakthrough of second near‑infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics[J]. Chem Soc Rev,2018,47(12):4258‑4278. DOI:10.1039/c8 cs00234g.
[39] HuZ, FangC, LiB, et al. First‑in‑human liver‑tumour surgery guided by multispectral fluorescence imaging in the visible and near‑infrared‑Ⅰ/Ⅱ windows[J]. Nat Biomed Eng,2020,4(3):259‑271. DOI: 10.1038/s41551-019-0494-0.
[40] GarlandM, YimJJ, BogyoM. A bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application[J]. Cell Chem Biol,2016,23(1):122‑136. DOI: 10.1016/j.chembiol.2015.12.003.
[41] LandauMJ, GouldDJ, PatelKM. Advances in fluorescent-image guided surgery[J]. Ann Transl Med,2016,4(20):392. DOI: 10.21037/atm.2016.10.70.
[42] EsfahaniSA, HeidariP, KucherlapatiMH, et al. Optical imaging with a novel cathepsin‑activatable probe for enhanced detection of colorectal cancer[J]. Am J Nucl Med Mol Imaging,2019,9(5):230‑242.
[43] SmithBL, GaddMA, LanahanCR, et al. Real‑time, intraoperative detection of residual breast cancer in lumpectomy cavity walls using a novel cathepsin‑activated fluorescent imaging system[J]. Breast Cancer Res Treat,2018,171(2):413‑420. DOI: 10.1007/s10549-018-4845-4.
[44] LiuY, WalkerE, IyerSR, et al. Molecular imaging and validation of margins in surgically excised nonmelanoma skin cancer specimens[J]. J Med Imaging (Bellingham),2019,6(1):016001. DOI: 10.1117/1.JMI.6.1.016001.
[45] HeK, LiP, ZhangZ, et al. Intraoperative near‑infrared fluorescence imaging can identify pelvic nerves in patients with cervical cancer in real time during radical hysterectomy[J]. Eur J Nucl Med Mol Imaging,2022,49(8):2929-2937. DOI: 10.1007/s00259-022-05686-z.
[46] HeK, ZhouJ, YangF, et al. Near‑infrared intraoperative imaging of thoracic sympathetic nerves: from preclinical study to clinical trial[J]. Theranostics,2018,8(2):304‑313. DOI: 10.7150/thno.22369.
[47] WangK, DuY, ZhangZ, et al. Fluorescence image‑guided tumour surgery[J]. Nature Reviews Bioengineering,2023[2023‑03‑23]. https://www.nature.com/articles/s44222-022-00017-1. [Epub ahead of print].